APPENDIX J. INTERSTATE ACCESS CHANGE REQUEST

I-94 Modernization Interstate Access Change Request Acceptance Letter J-2
I-94 Interstate Access Change Request: MDOT Technical Memorandum No. - TM 47..................... J-4
U.S. Department of Transportation
Federal Highway Administration

May 29, 2019
-

315 W. Allegan Street, Room 201
Lansing, MI 48933
517-377-1844 (office)
517-377-1804 (fax)
Michigan.FHWA@dot.gov
In Reply Refer To:
HDA-MI

Mr. Paul Ajegba, P.E.
Director
Michigan Department of Transportation
425 W Ottawa St
Lansing, MI 48933

I-94 Modernization Interstate Access Change Request Acceptance
Dear Director Ajegba:
The Federal Highway Administration (FHWA) reviewed the Interstate Access Change Request (IACR) submitted on February 12, 2019 and the revised IACR submitted on May 9, 2019 for the proposed modifications to access on I-94 from east of I-96 to east of Conner Avenue in the City of Detroit. The proposed modifications were determined to be acceptable based on established safety, operations and engineering standards.

FHWA and MDOT are preparing an Environmental Impact Statement (EIS) for the modernization of I-94 which will consider the social, economic and environmental impacts of the proposed modifications. Following the Record of Decision (ROD), final approval of the proposed modifications to access may be given provided that the scope and design of the proposed project is consistent with the revised IACR submitted on May 9, 2019 and the ROD.

If you have any questions, please contact Chris Youngs at Chris.Youngs@dot.gov or (517)7021839.

Sincerely,

THEODORE G \quad Digitally signed by THEODORE G BURCH BURCH
 Date: 2019.05.29 08:53:52-04'00'

Theodore G. Burch, P.E.

Assistant Division Administrator
For: Russell L. Jorgenson, P.E. Division Administrator

Sender initials (TGB)
By e-mail
cc: Tony Kratofil, MDOT
Bradley Wieferich, MDOT
Terry Stepanski, MDOT
Lori Noblet, MDOT
Elaine Poole, MDOT
Chris Youngs, FHWA
Ralph Pauly, FHWA
Mike Ivey, FHWA
Mark Lewis, FHWA
Russell Jorgenson, FHWA
Theodore Burch, FHWA
File Directory: O:\FHWA Records\ENGI Engineering and Operations\ENGI 1 Access
Interchange Requests \I-94 Modernization
File Name:
I-94_Modernization_Interstate_Access_Change_Request_Acceptance_CY_MAY292019

I-94 Interstate Access Change Request

MDOT Technical Memorandum No. - TM 47

Date: May 9, 2019

Project Title: I-94 Modernization Project
MDOT JN: 122114
Control Section: 82024

Author: Corey Fischer, AICP
Reviewer: Joe Blasi, PE, PTOE

This document addresses the following interchanges:

- I-94 / Linwood Avenue and M-5 (Grand River) *
- I-94 / 14th Street
- I-94 / Trumbull Avenue *
- I-94 / M-10
- I-94 / John R Street, Brush Street, Beaubien Street, and Hastings Street
- I-94 / I-75 *
- I-94 / Russell Street
- I-94 / Chene Street *
- I-94 / Mount Elliott Street
- I-94 / Van Dyke Avenue *
- I-94 / Gratiot Avenue
- I-94 / French Road
- I-94 / Conner Avenue
- M-10 / Forest Avenue and Four Tops / Calumet
- M-10 / Grand Boulevard and Milwaukee Avenue
* Indicates no change in access
Table of Contents
1.0 Introduction 5
1.1 Project Description 6
1.2 Project Location and Limits 7
1.3 Purpose and Need 8
1.4 Summary of Build Alternative 8
2.0 Existing and Future No-Build 26
2.1 Network Configuration 26
2.2 Traffic Forecast. 26
2.3 Existing (2014) Peak Period Traffic Operations 27
2.3.1 A.M. Peak Period Operational Results 28
2.3.2 P.M. Peak Period Operational Results 29
2.4 Future (2040) No-Build Peak Period Traffic Operations 36
2.4.1 A.M. Peak Period Operational Results 36
2.4.2 P.M. Peak Period Operational Results 37
2.5 Crash Analysis 44
2.5.1 Existing Conditions 44
2.5.2 Future No-Build 50
2.6 Summary 50
3.0 Policy Point 1: Build Alternative 51
3.1 Description of Build Alternative 51
3.2 Peak Period Traffic Operations Analysis 52
3.2.1 A.M. Peak Period Operational Results 52
3.2.2 P.M. Peak Period Operational Results 53
3.3 Safety Analysis 60
3.4 Conceptual Sign Plan and Pavement Markings 63
3.5 Summary 63
4.0 Policy Point 2: Access, Movements and Design Standards 64
4.1 Traffic Movements 64
4.2 Design Standards and Any Potential Design Exceptions 64
4.3 Special Considerations 65
5.0 Conclusion 66
5.1 Recommendation for Safety, Operations and Engineering Acceptability 66
5.2 NEPA Considerations 66
5.3 Next Steps 66
Exhibits and Figures
Figure 1: Analysis Area Limits 7
Figure 2: I-94 / Linwood Avenue and M-5 (Grand River) 9
Figure 3: l-94 / 14th Street 10
Figure 4: I-94 / Trumbull Avenue 12
Figure 5: I-94 / M-10. 13
Figure 6: John R Street, Brush Street, Beaubien Street, and Hastings Street 15
Figure 7: I-94 / I-75 16
Figure 8: I-94 / Russell Street 17
Figure 9: I-94 / Chene Street 18
Figure 10: l-94 / Mt. Elliott Street 19
Figure 11: I-94 / Van Dyke Avenue 20
Figure 12: l-94 / Gratiot Avenue 21
Figure 13: l-94 / French Road 22
Figure 14: I-94 / Conner Avenue 23
Figure 15: M-10 / Forest Avenue 24
Figure 16: M-10 / Milwaukee Avenue 25
Exhibit 1: 2014 Existing A.M. Modeled Level of Service 31
Exhibit 2: 2014 Existing P.M. Modeled Level of Service 33
Exhibit 3: 2040 No-Build A.M. Modeled Level of Service 39
Exhibit 4: 2040 No-Build P.M. Modeled Level of Service 41
Figure 17: Existing Crash Density 47
Exhibit 5: 2040 Build A.M. Modeled Level of Service 55
Exhibit 6: 2040 Build P.M. Modeled Level of Service 57
Figure 18: Arterial, Ramp and Intersection Sub Areas 61*Figures are embedded in text, exhibits are on individual sheets
Tables
Table A: Level of Service Thresholds 28
Table B: A.M. Existing Segments on I-94 with LOS E or F 29
Table C: P.M. Existing Segments on I-94 with LOS E or F 30
Table D: Existing LOS in Analysis Area 35
Table E: A.M. Future No-Build Segments on I-94 with LOS E or F 37
Table F: P.M. Future No-Build Segments on I-94 with LOS E or F 38
Table G: Existing vs. No-Build LOS 43
Table H: Existing Crash Severity by Year 45
Table I: Existing Crash Types by Year 45
Table J: K/A Crashes on I-94 46
Table K: Statewide Crash Rates 47
Table L: Mainline Crash Rates 48
Table M: Intersection Crash Severity 49
Table N: Intersection Crash Type 49
Table O: Total Crashes by Intersection 50
Table P: A.M. Build Alternative Segments on I-94 with LOS E or F 52
Table Q: P.M. Build Alternative Segments on I-94 with LOS E or F 53
Table R: Build Alternative vs. No-Build Alternative LOS 59
Table S: Predicted Crashes Per Year - No-Build and Build Alternative 60
Table T: Predicted Highway Crashes Per Year - No-Build and Build Alternative 61
Table U: Arterial, Ramp and Intersection Crashes 62
Table V: One-Way vs. Two-Way Brush and John R 63

May 9, 2019
1.0 Introduction

The following Interstate Access Change Request (IACR) technical report demonstrates that multiple changes in access to the I-94 corridor in Detroit, Michigan, do not have significant negative impacts on safety and operations of the Interstate system. The information contained within this report provides substantiated reasoning to justify this conclusion and render a decision by the Federal Highway Administration (FHWA).

The contents in this report are broken down into five chapters. The first chapter describes the project, what exists today and what changes are being proposed. Chapter 2 outlines the operational and safety performance of the corridor as it exists today and what it is forecasted to be by 2040. Chapter 3 analyzes the operational and safety performance that come with the Build Alternative in the year 2040. Chapter 4 outlines design standards that will be followed for the proposed changes. Finally, Chapter 5 briefly summarizes the contents of the report and delivers a conclusion/recommendation for the FHWA.

On May 22, 2017, the FHWA updated the "Policy on Access to the Interstate System," as published under Title 23, United States Code (U.S.C.), Section 111. This update is intended to streamline and eliminate duplication with the National Environmental Policy Act (NEPA) process. Six of the eight policy points previously documented in the last FHWA policy (Volume 74, Number 165) will now be addressed solely within the NEPA document. The remaining two policy points are addressed in an IACR technical report that focuses on the safety, operational and engineering aspects of the proposed change in access. The two policy points described below are addressed in detail within this document:

1. An operational and safety analysis has concluded that the proposed change in access does not have a significant adverse impact on the safety and operation of the Interstate facility (which includes mainline lanes, existing, new, or modified ramps, and ramp intersections with crossroad) or on the local street network based on both the current and the planned future traffic projections. The analysis should, particularly in urbanized areas, include at least the first adjacent existing or proposed interchange on either side of the proposed change in access (Title 23, Code of Federal Regulations (CFR), paragraphs 625.2(a), 655.603(d) and 771.111(f)). The crossroads and the local street network, to at least the first major intersection on either side of the proposed change in access, should be included in this analysis to the extent necessary to fully evaluate the safety and operational impacts that the proposed change in access and other transportation improvements may have on the local street network (23 CFR 625.2(a) and 655.603(d)). Requests for a proposed change in access should include a description and assessment of the impacts and ability of the proposed changes to safely and efficiently collect, distribute, and accommodate traffic on the Interstate facility, ramps, intersection of ramps with crossroad, and local street network (23 CFR 625.2(a) and 655.603(d)). Each request should also include a conceptual plan of the type and location of the signs proposed to support each design alternative (23 U.S.C. 109(d) and 23 CFR 655.603(d)).
2. The proposed access connects to a public road only and will provide for all traffic movements. Less than "full interchanges" may be considered on a case-by-case basis for applications requiring special access, such as managed lanes (e.g., transit or high occupancy vehicle and high occupancy toll lanes) or park and ride lots. The proposed access will be designed to meet or exceed current standards (23 CFR 625.2(a), 625.4(a)(2), and 655.603(d)). In rare instances where all basic movements are not provided by the proposed design, the report should include a full-interchange option with a comparison of the operational and safety analyses to the partial-interchange option. The report should also include the mitigation proposed to compensate for the missing movements, including wayfinding signage, impacts on local intersections, mitigation of driver expectation leading to wrong-way movements on ramps, etc. The report should describe whether future provision of a full interchange is precluded by the proposed design.

1.1 Project Description

Nearly 30 years ago, the Michigan Department of Transportation (MDOT) recognized the need to reconstruct I-94 in Detroit and in the 1990s sought community consensus on making repairs. In December 2004, a Final Environmental Impact Statement (FEIS) for the rehabilitation of I-94 was approved by FHWA. The rehabilitation included one additional through-lane in each direction, continuous service drives, replacement of more than sixty bridges, and modernization of the interchanges at I-75 (the Fisher Freeway) and M-10 (Lodge Freeway). A Record of Decision (ROD) was filed in 2005 that allowed MDOT to move forward with final design and construction activities.

In the summer of 2015, MDOT hosted open houses in Detroit where feedback gathered from the public focused primarily on local neighborhood connectivity within the corridor. The DOT requested assistance from members of the Detroit Planning Department to develop connectivity improvements over the freeway. The assistance included hosting neighborhood mobility and visioning workshops. The results of the workshops led the project team to make modifications to the Approved Selected Alternative (ASA) from the 2004 FEIS. These modifications were presented to the public in the fall of 2016 at a second round of MDOT-hosted open houses in Detroit.

The focus of the design modifications were to:

- Better use existing city streets as local connections instead of building new, continuous service drives adjacent to the freeway as proposed in the original plan
- Modify local access ramps to and from I-94, M-10 and I-75 to improve operations and safety
- Use the "complete streets" approach in the design of bridges and service drives to make them user-friendly for cars, bikes and pedestrians
- Reduce the overall project footprint to avoid and minimize impacts

On July 7, 2017, MDOT and FHWA published a Notice of Intent (NOI) in the Federal Register announcing their plans to prepare a Supplemental Environmental Impact Statement (SEIS) for proposed design modifications. Considered part of the SEIS, this IACR evaluates the operational and safety performance within the study area corridor. The IACR is not fully approved until a ROD is issued on the SEIS.

The proposed changes to I-94 and the surrounding network are known as the "Build Alternative" within the context of this document.

1.2 Project Location and Limits

The l-94 Modernization Project limits include the area where infrastructure modifications are proposed. Those limits are I-94 from I-96 to Conner Avenue. In order to satisfy the requirements for making changes to the interstate, a slightly wider limit must be used for the traffic and safety analysis. The requirements are that the analysis should include at least the first adjacent interchange on either side of the proposed change in access. In addition, the crossroads and the local street network, to at least the first major intersection on either side of the proposed change in access, should be included in the analysis. These analysis area limits, or microsimulation model limits are depicted in Figure 1. The analysis area on the I-94 corridor extends from the western limits of the I-96 interchange to Dickerson Avenue (east of Conner Avenue). The M-10 limits run from the northern ramps of Grand Boulevard down to Forest Avenue. Interstate 75 limits extend from Clay Street down to Warren Avenue. The local street network includes all service drives adjacent to I-94, I-96, I-75 and M-10, plus other side streets that span over the mainline. Exhibits One through Six in Sections 2.0 and 3.0 identify all the intersections included in the analysis.

Figure 1: Analysis Area Limits

Source: HNTB

May 9, 2019

1.3 Purpose and Need

The purpose of the I-94 rehabilitation is to improve the capacity, safety and condition of the I-94 corridor to support the mobility needs of local and interstate commerce. The need for improvements stems from the freeway being built in the late 1940s and early 1950s and being at the end of its service life. Furthermore, traffic operations and safety continue to deteriorate in the corridor. Improvements to the service drives need to be updated to a "complete streets" design to support commercial activities and accommodate those living within the project area.

1.4 Summary of Build Alternative

The following section summarizes the Build Alternative for the I-94 study area corridor. The I-94 Rehabilitation Project involves the reconstruction and rehabilitation of the corridor, including the freeway-to-freeway system interchanges with M-10 and I-75, which are nearing the end of their useful life. All bridges within the project area are proposed to be reconstructed and modernized. The proposed action also adds or modifies specific auxiliary, acceleration, and deceleration lanes. The Build Alternative includes an additional lane in each direction along I-94 from I-96 to Conner Avenue. Full shoulders along the inside and outside lanes of the l-94 corridor are included in the design. These improvements bring the I-94 freeway up to current geometric standards where practical and feasible. Additional improvements to the local road system and service drives are also included in the Build Alternative. These local improvements will enhance connectivity for vehicles, bicyclists and pedestrians.

The following subsections describe specific areas that will be modified as part of the Build Alternative design. Details on levels of service (a measure of operational performance) are provided in Sections 2.3, 2.4 and 3.2. A detailed preliminary design plan can be found in Appendix D.

Interchanges

Reconstruction of all project area interchanges is proposed under the Build Alternative in order to improve the physical condition of the facilities and to meet current design standards. Some access points are proposed to be rebuilt in their same configuration while some l-94 ramps will be removed and not replaced.

Interchanges to be reconstructed include:

- I-94 / Linwood Avenue and M-5 (Grand River) - Currently, the full-access interchange has ramps accessing Edsel Ford Service Drive on both sides of I-94. The interchange is proposed to maintain the same configuration and access. The existing westbound entrance and eastbound exit ramps will remain and are not included as part of this project. The westbound exit and eastbound entrance ramps will be reconstructed and lengthened.

Figure 2: I-94 / Linwood Avenue and M-5 (Grand River)

Source: HNTB

- I-94 / 14 ${ }^{\text {th }}$ Street - The existing condition at this location has only an eastbound slip entrance ramp east of $14^{\text {th }}$ Street. The ramp will be removed to eliminate the partial access as well as the deficient spacing between it and the Trumbull Avenue exit ramp. Eastbound I-94 can be accessed from Linwood Avenue, only four blocks to the west.

Figure 3: I-94 / 14th Street

Source: HNTB

May 9, 2019

- I-94 / Trumbull Avenue - The existing condition includes partial access to and from the west represented by I-94 westbound entrance and eastbound exit ramps. The existing partial access will be maintained, but the ramps will be lengthened to the west of Rosa Parks Boulevard. Drivers that exit from I-94 to Trumbull and want to return to I-94 eastbound would have to follow the service drive, turn east on Warren Avenue and then turn north on Brush Street to reach the next I-94 eastbound entrance ramp. To help mitigate this situation, wayfinding signage will be added to the local road network directing vehicles along this route.

This area has the potential for wrong way driving due to the transition from a two-way service drive to one-way. The southern intersection of Edsel Ford Service Drive and Trumbull Avenue already exists as a two-way to one-way configuration. Westbound traffic on the Edsel Ford Service Drive east of Trumbull Avenue is only permitted to turn right at the intersection. The roadway is aligned so that westbound vehicles are not lined up across from eastbound traffic. A channelizing island has also been placed at the intersection to discourage vehicles from going straight or left. The Build Alternative will construct the Edsel Ford Service Drive to match the existing configuration. To discourage northbound vehicles on Trumbull Avenue from turning left onto the eastbound Edsel Ford Service Drive, a raised median island and regulatory signs prohibiting left turns will be added. Section 4.3 lists all the areas where special considerations will need to be taken to prevent the potential for wrong way driving.

May 9, 2019

Figure 4: I-94 / Trumbull Avenue

Source: HNTB

- I-94 / M-10 - This is an existing full access system interchange that includes left-sided and right-sided entrance and exit ramps. The Build Alternative eliminates the left-sided ramps and creates entrance and exit fly-over ramps that merge with the mainline from the right. In addition, the Build Alternative restacks the interchange to have $\mathrm{M}-10$ pass under I-94. The northbound $\mathrm{M}-10$ exit ramp to $\mathrm{I}-94$ will be relocated to the south and braided with the northbound Forest Avenue entrance ramp. Similarly, the southbound M-10 entrance ramp from I-94 will braid with the southbound Forest Avenue / Four Tops / Calumet exit ramp.

Figure 5: I-94 / M-10

Source: HNTB

- I-94 / John R Street, Brush Street, Beaubien Street, and Hastings Street - This interchange currently functions as a full-access split diamond interchange with the eastbound exit and westbound entrance ramps accessing l-94 at John R Street and westbound exit and eastbound entrance ramps accessing I-94 at Beaubien Street. The Build Alternative design will relocate both west-facing ramps to Brush Street. East-facing ramps will be added to an extension of Hastings Street that will be constructed over I-94. The eastbound exit ramp will connect with a new one-way service drive at Brush Street. The service drive will extend to the eastbound I-94 entrance ramp at Hastings Street. The current service drive between John R and Brush will be eliminated. The new service drive connection will have signalized intersections at Brush, Beaubien and Hastings.

The design creates close spacing between the newly created (eastbound) service drive and Hendrie Street. Hendrie Street currently services local traffic in eastbound and westbound directions. The operational analysis (see Section 3.2) shows minimal impact to traffic and safety given the new design spacing. Special consideration in this area is given to maintain the local street network due to Section 106 (historic preservation) concerns between John R and Brush, south of Hendrie. Furthermore, the City of Detroit wishes to maximize the use of the existing local grid network where possible.

The westbound Edsel Ford Service Drive will be maintained. The Woodward Avenue intersection has the potential for wrong way driving in the eastbound direction due to the transition from a two-way to one-way service drive. This is already an existing condition. The Hastings Avenue bridge over I-94, the I-94 eastbound entrance ramp, and the I-94 westbound exit ramp are new for the Build Alternative. To help discourage wrong-way entry to the interstate at the l-94 westbound exit ramp a raised median island on the north leg of the intersection and regulatory signs prohibiting left turns for southbound vehicles will be added. Regulatory signs prohibiting right turns will be added for northbound vehicles. Section 4.3 lists all the areas where special considerations will need to be taken to prevent the potential for wrong way driving.

John R Street and Brush Street, crossing over I-94, currently function as a one-way pair. This report assumes that they will both remain one-way in the final design. However, the City of Detroit has expressed interest in converting John R and Brush to two-way streets. The new interchange design does not preclude this conversion from one-way to two-way operations. An operational and safety analysis was completed for both one-way and two-way options and can be found in Section 3.2. If the City of Detroit wishes to move forward with a two-way conversion prior to final design, then the design will be added within the study area limits. The City of Detroit would be responsible for making the adjustment outside the study area.

The Build Alternative will create a weaving segment on I-94 between M-10 and ramps to/from Brush. Although the weave is not ideal and removal of the ramps was considered, input from various stakeholders has identified the Brush Street ramps as being of critical importance. This service interchange provides for necessary local circulation between the two system
interchanges, including access to a medical district (hospitals and medical facilities) as well as a museum and cultural district. A robust analysis using traffic simulation software involving vehicle trajectories and gap analysis revealed that the weave and surrounding area in question would operate at an acceptable LOS in the future. A technical memorandum can be found in Appendix C (page C-123) that provides greater analysis of the vehicle maneuvering between $\mathrm{M}-10$ and Brush Street and the surrounding network.

Figure 6: John R Street, Brush Street, Beaubien Street, and Hastings Street

Source: HNTB

- I-94 / I-75 - The I-94/I-75 interchange is a full access system interchange connecting two interstate freeways. All of the ramps are flyover ramps and currently exit and enter from the right side of the mainline. The Build Alternative will reconstruct the existing interchange and modernize ramps to meet current design standards, which will flatten the flyover ramp curves compared to what exists today.

Figure 7: I-94 / I-75

Source: HNTB

- I-94 / Russell Street - This exists as a partial interchange that provides an eastbound exit movement from I-94 to Russell Street. The Build Alternative eliminates access from I-94 to Russell Street. Russell Street will be accessible from eastbound I-94 via Brush Street or Chene Street.

Figure 8: I-94 / Russell Street

Source: HNTB

- I-94 / Chene Street - Currently, the I-94 / Chene Street interchange is a three-quarters partial access interchange consisting of eastbound I-94 exit and entrance slip ramps and an entrance slip ramp to westbound I-94. The Build Alternative maintains the three ramps in the same locations, with the exception coming from the westbound entrance ramp, which is now configured as a button-hook ramp just to the west of Chene Street. This was done to accommodate a two-way Harper Avenue. Section 4.1 explains the decision to not make the Chene Street interchange full service by adding a westbound exit ramp. The westbound movement can be accommodated through the nearby Mt. Elliott Street interchange.

Figure 9: I-94 / Chene Street

Source: HNTB

- I-94 / Mt. Elliott Street - Currently, the I-94 / Mt. Elliott Street interchange is a full access interchange. All existing freeway access will be maintained within the proposed action. The existing westbound I-94 entrance ramp currently is located west of the interchange near Lucky Place. The Build Alternative will relocate and reconfigure the westbound I-94 entrance ramp as a button-hook ramp just west of Mt. Elliott. The reconfiguration accommodates a two-way Harper Avenue. The westbound exit ramp is braided with Harper and ties into the westbound side of Harper before Mt. Elliott. The eastbound Service Drive bridge over I-94 will be reconstructed to maintain access to the northern service drive. To mitigate potential wrong way driving a raised, channelized island between westbound and eastbound traffic on the east leg of the intersection and regulatory signing will be added. To aid southbound vehicles on Mt. Elliott in entering the correct lane, turning guide lines will be used in addition to regulatory signing. Section 4.3 lists all the areas where special considerations will need to be taken to prevent the potential for wrong way driving.

Figure 10: I-94 / Mt. Elliott Street

Source: HNTB

- I-94 / Van Dyke Avenue - Van Dyke (M-53) is currently a full access diamond interchange. This configuration will be maintained in the Build Alternative, but the entrance and exit ramps will be lengthened. This area has the potential for wrong way driving due to the transition from a two-way service drives to one-way. The southern intersection of Edsel Ford Service Drive and Iroquois Avenue is already an existing condition, except moved two blocks to the west from Burns Avenue. The two-way to one-way transition on the northern service drive at Sheridan Street is also an existing condition, except moved two blocks to the east from Frontenac Avenue.

The diamond interchange in both the existing condition and the Build Alternative has the potential for wrong-way drivers on the I-94 westbound exit ramp and I-94 eastbound exit ramp. In the existing condition painted medians with cross hatching have been added to discourage left turns at the Edsel Ford Service Drive for both northbound and southbound vehicles. Ground mounted one-way signs and span mounted case signs also inform the driver of the direction of travel. In the build alternative the existing painted medians will be replaced with raised median islands to further discourage wrong way movements. Regulatory signing will be added to further direct drivers on the direction of travel. Section 4.3 lists all the areas where special considerations will need to be taken to prevent the potential for wrong way driving.

Figure 11: I-94 / Van Dyke Avenue

Source: HNTB

- I-94 / Gratiot Avenue - The existing I-94 / Gratiot Avenue full access interchange is a partial cloverleaf configuration with ramps in the northwest and southeast quadrants. The Build Alternative will reconfigure the existing partial cloverleaf interchange into a standard diamond interchange, maintaining full access. Service drive and side street connections will also be constructed to create better neighborhood continuity.

Figure 12: I-94 / Gratiot Avenue

Source: HNTB

- I-94 / French Road - The interchange is currently three-quarter partial access with eastbound I-94 exit and entrance ramps, as well as a westbound I-94 entrance ramp. Due to the low demand, proximity to other interchanges and geometric restrictions, the Build Alternative eliminates this partial access interchange. Access will be provided either by the adjacent Gratiot Avenue or Conner Avenue interchanges.

Figure 13: I-94 / French Road

Source: HNTB

- I-94 / Conner Avenue - The existing full access interchange is comprised of directional ramps and turnaround lanes in a unique configuration that can be confusing to motorists. Northbound and southbound Conner Avenue lanes currently diverge through the interchange to accommodate directional ramps and crossover movements. The existing eastbound I-94 exit ramp merges with southbound Conner Avenue. Vehicles can either continue southbound or use a turnaround to travel northbound. Similarly, the existing westbound I-94 exit ramp tees into northbound Conner Avenue. Vehicles can either turn right to continue along northbound Conner Avenue, or they can continue straight where they loop around and connect on the left side of southbound Conner Avenue. Northbound and southbound Conner Avenue have separate westbound I-94 entrance ramps. Southbound Conner Avenue must use a turnaround to merge with northbound Conner Avenue vehicles before entering eastbound I94. The Build Alternative reconfigures the interchange into a standard diamond interchange, maintaining full access. The Build Alternative provides a new bicycle and pedestrian structure for the Iron-Belle Trail which follows the existing southbound Conner alignment.

Figure 14: I-94 / Conner Avenue

Source: HNTB

- M-10 / Forest Avenue and Four Tops / Calumet - The existing M-10 / Forest Avenue full access interchange is a standard diamond configuration with service drives. The proximity of the northern Forest Avenue ramps to the M-10/I-94 interchange creates difficulties for drivers trying position for either a left or right-side exit onto l-94. In the Build Alternative design, the Forest Avenue northbound entrance ramp and southbound exit ramp will be modified and braided with the new $\mathrm{M}-10$ / I-94 south-facing ramps. The southbound exit ramp and the two south-facing ramps (northbound exit ramp and southbound entrance ramp) at Forest Avenue will be moved a few blocks south to access Four Tops / Calumet. A complete street, U-turn, bridge will be constructed at Four Tops / Calumet. Full access will be maintained.

Figure 15: M-10 / Forest Avenue

[^0]- M-10 / Grand Boulevard and Milwaukee Avenue - Currently, the M-10 northbound exit and southbound entrance ramps directly connect with Milwaukee Avenue. The northbound entrance ramp and southbound exit ramp connect to $\mathrm{M}-10$ via slip ramps north of Grand Boulevard. Service drive access is available on both sides of the interchange. In the Build Alternative design, the northbound $\mathrm{M}-10$ exit ramp to Milwaukee Avenue will be relocated south of Holden Street to braid with the I-94 ramps. The southbound entrance-ramp from Milwaukee will also be reconstructed. This area has the potential for wrong way driving due to the transition from a two-way service drive to one-way at Baltimore Avenue on the southbound service drive. Signing and pavement markings will be added per MUTCD guidelines in areas where two-way segments transition to one-way segments. Raised pavement will also be added to channelize vehicles in the proper direction. Section 4.3 lists all the areas where special considerations will need to be taken to prevent the potential for wrong way driving.

Figure 16: M-10 / Milwaukee Avenue

Source: HNTB

May 9, 2019

2.0 Existing and Future No-Build

Sections 2.1 and 2.2 describe the network configuration and the process for volume forecasting in the study area. Sections 2.3 and 2.4 highlight the Existing (2014) and No-Build (2040) operations for the I-94 corridor. Finally, Section 2.5 describes how crashes are impacting the corridor.

2.1 Network Configuration

The analysis area limits, or microsimulation model limits on the I-94 corridor extend from the western limits of the I-96 interchange to Dickerson Avenue (east of Conner Avenue) on I-94. The $\mathrm{M}-10$ limits run from the northern ramps of Grand Boulevard down to Forest Avenue. Interstate 75 limits extend from Clay Street down to Warren Avenue. The local street network includes all service drives adjacent to I-94, I-96, I-75 and M-10, plus other side streets that are directly affected by the mainline. Exhibits One through Six in Sections 2.0 and 3.0 identify all the intersections included in the analysis.

Interstate 94 through the study area is currently a six-lane urban freeway that carries three lanes of traffic in the eastbound and westbound directions. There are over 50 ramp entrances or exits within the seven-mile project limits. Three major system interchanges influence the I-94 study area: I-96, M-10 and I-75. Interstate 96 is located on the western edge of the study area, and M10 and I-75 pass through the corridor. Each of these interchanges contribute to the poor operations on the I-94 corridor. One-way service drives intermittently run parallel to the I-94 corridor and are utilized as access points to and from I-94.

2.2 Traffic Forecast

A detailed description of how traffic was forecasted for the study area can be found in "TM 3 - I94 Traffic Volume Forecasting" technical memorandum in Appendix B. In summary, data taken from the Southeast Michigan Council of Governments' (SEMCOG) 2010 and 2040 travel demand model (TDM) was used to project yearly growth rates on the I-94 mainline, adjacent service roads and intersections. Existing traffic counts were grown to represent the year 2040 conditions. According to the SEMCOG TDM, the total traffic is expected to increase 29\% by 2040. While effective at predicting mainline volumes, limitations of the TDM caused the project team to adjust the methodology for projecting volumes on service drives and ramps. The methodology agreed upon by MDOT and SEMCOG is as follows:

1. A total of 1,000 thru vehicles per hour (VPH) were applied to the l-94 service drives during each of the a.m. and p.m. peak hours. The 1,000 thru vehicles are based on existing peak hour traffic volumes counted at the Chene Street and Mt. Elliott Street intersections with the I-94 eastbound and westbound service drives. Chene Street and Mt. Elliott Street were used to develop the thru VPH based on the existing continuous service drives at these locations.
2. Projected directional distributions were developed based on an evaluation of existing traffic volumes and anticipated travel pattern impacts from the continuous service drives.

The directional distributions were applied to the 1,000 thru VPH to assign peak hour thru volumes on the eastbound and westbound I-94 service drives.
3. To develop peak hour turning movement volumes at the study area intersections, 10% of the service drive thru traffic volume was used. The peak hour turning movement percentage was developed based on review of existing turning movement counts at low volume intersections on the I-94 corridor and the Trumbull Ave Bridge evaluation. The Trumbull evaluation can be found in Appendix C (page C-149). Additionally, the I-96 reconstruction project (Newburg Rd to Melvin St) in Livonia was reviewed to confirm the proposed methodology for the I-94 corridor. A review of the I-96 project found that when distributing turning volumes to adjacent signals it was assumed that 10% turned left and 10% turned right which matches the proposed methodology for the I-94 corridor. This methodology was used if the existing turning movements were lower than 10% of the service drive thru volume, otherwise the existing volume was used.

Existing (2014) and Future (2040) peak hour volumes, plus the average daily traffic volumes can be found in Appendix B. Once existing and future volumes were forecasted for the corridor, traffic simulation modeling was used to evaluate existing and future traffic operations.

2.3 Existing (2014) Peak Period Traffic Operations

Microsimulation models play a vital role in predicting how roadways will operate in the future and assist DOTs in determining if a design will improve the overall performance of a corridor. To predict future operations on I-94, existing microsimulation models of the corridor were created and calibrated to match how traffic currently operates on the network in the a.m. and p.m. peak conditions. Quadstone Paramics was the software selected for the freeway analysis; Synchro was used to analyze the arterial intersections. The models were calibrated using 2014 as the base (existing) year, and then used as the foundation to predict 2040 roadway conditions in the NoBuild and Build Alternative configurations. A detailed explanation of how the existing a.m. and p.m. Paramics models were calibrated can be found in "TM 8 - Existing (2014) Paramics Assessment and Model Calibration for I-94" technical memorandum in Appendix C (page C-201). An additional calibration memo was created to highlight the proposed design weave between M 10 and Brush Street. That memorandum can also be found in Appendix C (page C-123).

Once calibrated, the a.m. and p.m. peak period models were run and raw data output (i.e. average speed and delay) was generated. The raw data output was then processed to show Level of Service (LOS) for mainline segments and adjacent intersections. Level of Service is a simplified method of describing how a corridor or intersection is performing operationally. The LOS thresholds are displayed in Table A. A LOS A or B means traffic is free-flowing, whereas a LOS E or F indicates that the demand on a roadway segment equals or exceeds its capacity, resulting in congestion. According to the "I-94 Rehabilitation Engineering Report" (June 2010), LOS E is considered the minimum acceptable LOS on urban freeways, but only during the peak hours. The minimum acceptable Design Criteria defined by MDOT for all other facilities is a LOS D or better.

The results of the existing peak hour conditions are described in the subsections below. The future No-Build and Build Alternative results are described in Sections 2.4 and 3.2, respectively.

Table A: Level of Service Thresholds

LOS	Freeways Mainline max Density (pc/mi/In)	Freeways Merge/Diverge max Density (pc/mi/ln)	Freeways Weaving Segment (pc/mi/ln)	Signalized Interchanges Avg. Delay (sec/veh)	Signalized Intersections (sec/veh)	Unsignalized Intersections Avg. Delay (sec/veh)
A	<11	<10	<10	<15	<10	<10
B	$>11-18$	$>10-20$	$>10-20$	$>15-30$	$>10-20$	$>10-15$
C	$>18-26$	$>20-28$	$>20-28$	$>30-55$	$>20-35$	$>15-25$
D	$>26-35$	$>28-35$	$>28-35$	$>55-85$	$>35-55$	$>25-35$
E	$>35-45$	>35	>35	$>85-120$	$>55-80$	$>35-50$
F	>45 Demand Exceeds Capacity	Demand Capeeds	Capacity Demand Exceeds Capacity	>120	>80	>50

Source: HCM 6
Note: pc - passenger cars, mi - mile, In - lane, sec - second, veh - vehicle

2.3.1 A.M. Peak Period Operational Results

Exhibit 1 shows the a.m. existing operational performance of the l-94 corridor, plus surrounding intersections.

Mainline

Table B describes the portions of the I-94 corridor that operate at a LOS E or F. Eastbound I-94 performs at a LOS A, B or C throughout the majority of the corridor. However, LOS F occurs from the western edge of the study area to the $14^{\text {th }}$ Street entrance-ramp. There is also a quarter-mile segment between M-10 and Woodward Avenue that is LOS E. These slowdowns are a result of high traffic volumes and substandard acceleration and weave distances.

Westbound, LOS E and F extends from the eastern edge of the study area to $\mathrm{M}-10$. There is a one-quarter mile stretch between the l-75 ramps where the LOS is a D . The bottleneck is released at I-75 temporarily before drivers experience another bottleneck approaching M-10. West of M10, LOS C and D extend to the study area's western boundary. Cumulatively, about 43 percent of the I-94 analysis area operates at a LOS E or F.

On I-75, LOS E extends from Clay Street to Ferry Street in the southbound direction. All other segments of I-75 and M-10 operate at acceptable LOS.

Table B: A.M. Existing Segments on I-94 with LOS E or F

Segment	Direction	Length (Mi)	Percent of I-94 Study Area Corridor
Study area western edge to $14^{\text {th }}$ St entrance-ramp	EB	0.88	6.08%
M-10 entrance-ramp to Woodward Ave entrance-ramp	EB	0.21	1.45%
Connor St exit-ramp to I-75	WB	4.32	29.79%
I-75 entrance-ramp to M-10 flyover	WB	0.77	5.34%
Total of all segments	EB/WB	6.18	42.66%

Note: Analysis area is approximately 14.5 miles (7.25 miles one way). Lengths are an approximation.

Arterial Intersections

All intersections operate at a LOS C or better. Low traffic demand on the surrounding arterial streets is the contributing factor as to why no intersections operate at a LOS E or F .

2.3.2 P.M. Peak Period Operational Results

Exhibit 2 shows the existing p.m. operational performance of the l-94 corridor, plus surrounding intersections.

Mainline

Table C shows that half of the corridor operates at a LOS E or F during the p.m. peak. Eastbound I-94 operations have a mixture of LOS C through F. Level of service E and F occurs between I96 and I-75, and between the Chene Street entrance-ramp to Van Dyke Avenue (M-53). East of Van Dyke Avenue, traffic clears up slightly even though LOS E appears between the access ramps at Gratiot Avenue (M-3), French Road and Conner Street.

Traffic operates at a LOS C and D moving westbound from Conner Street to I-75. After that, LOS E and F extends two-miles to the I-96 interchange. Past I-96, traffic improves to a LOS C. Poor LOS can be attributed to vehicles positioning to exit at the I-96 interchange.

On southbound I-75, LOS E extends from the Clay Street entrance-ramp to the I-94 exit-ramp. All other segments of I-75 and M-10 operate at acceptable LOS.

Table C: P.M. Existing Segments on I-94 with LOS E or F

Segment	Direction	Length (Mi)	Percent of I-94 Study Area Corridor
Edsel Ford exit-ramp (I-96) to I-75 entrance-ramp	EB	2.78	19.17%
Chene St entrance-ramp to M-53 entrance-ramp	EB	1.62	11.17%
Between M-3 Loop and entrance-ramp	EB	0.16	1.10%
Between French Rd ramps	EB	0.37	2.55%
Between Conner St ramps	EB	0.26	1.79%
I-75 entrance-ramp to I-96 exit-ramp	WB	2.00	13.79%
Total of all segments	EB/WB	7.19	49.57%

Note: Analysis area is approximately 14.5 miles (7.25 miles one way). Lengths are an approximation.

Arterial Intersections

There are no intersections that perform at LOS E or F during the p.m. peak period. Southbound I-75 Frontage Road at E Ferry Street is the only intersection that performs at a LOS D. Like the a.m., low volumes on the arterial streets contribute to the satisfactory operations.

Exhibit 1

I-94 IACR Study Area
2014 Existing AM Modeled Level of Service

Exhibit 2

I-94 IACR Study Area
2014 Existing PM Modeled Level of Service

Table D: Existing LOS in Analysis Area

Segment	SegmentType Type	Existing AM Peak		Existing PM Peak	
		$\begin{gathered} \text { Density } \\ (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{gathered}$	Los	Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)	Los
Eastbound 1-94					
Grand Blvd Entr Ramp to 1-96 Exit Ramp	Weave	45.3	F	27.5	c
Grand River Ave Exit Ramp	Ramp	53.4	F	26.8	c
Grand River Ave Exit Ramp to l-96 S-E Entr Ramp	Basic	84.3	F	38.5	E
1-96 S-E Entr Ramp	Ramp	95.7	F	55.0	F
$1-94$ N-E Entr Ramp	Ramp	59.2	F	52.0	F
Linwood St Entr Ramp	Ramp	47.7	F	53.8	F
14 th St Entr Ramp to Trumbull Ave Exit Ramp	Weave	25.5	c	41.4	E
M-10 Exit Ramps	Ramp	26.5	c	55.6	F
M-10 Exit Ramps to M-10 Entr Ramps	Basic	20.1	c	46.6	F
M-10 Entr Ramps to John R St Exit Ramp	Ramp*	37.5	E	56.9	F
John R St Exit Ramp to -75 Exit Ramp	Basic	29.6	D	62.6	F
1-75 Exit Ramp	Ramp	28.4	D	95.3	F
$1-75$ Exit Ramp to Beaubien St Entr Ramp	Basic	14.7	B	102.2	F
Beaubien St Entr Ramp to Russell St Exit Ramp	Weave	13.0	B	92.5	F
Russell St Exit Ramp to -75 Entr Ramp	Basic	15.2	B	74.9	F
1-75 Entr Ramp to Chene St Exit Ramp	Weave	15.9	B	27.1	c
Chene St Exit Ramp to Chene St Entr Ramp	Basic	21.3	c	32.0	D
Chene St Entr Ramp to Mt Elliott St Exit Ramp	Weave	16.8	B	45.2	
Mt Elliott St Exit Ramp to Mt Elliott St Entr Ramp	Basic	22.9	c	45.3	F
Mt Elliott St Entr Ramp	Ramp	21.4	c	38.6	E
Mt Elliott St Entr Ramp to M-53 Exit Ramp	Basic	22.9	c	43.8	E
M-53 Exit Ramp	Ramp	28.4	D	58.4	F
M-53 Exit Ramp to M-53 Entr Ramp	Basic	24.9	c	38.9	E
M-53 Entr Ramp to Gratiot Ave Exit Ramp	Ramp*	19.6	B	29.7	D
Gratiot Ave Exit Ramp To Gratiot Ave Entr Ramp	Basic	20.3	c	39.1	E
Gratiot Ave Entr Ramp to French Rd Exit Ramp	Ramp*	17.6	B	32.3	D
French Rd Exit Ramp to French Rd Entr Ramp	Basic	20.2	c	39.6	E
French Rd Entr Ramp to Conner St Exit Ramp	Ramp*	18.7	B	31.6	D
Conner St Exit Ramp to Conner St Entr Ramp	Basic	17.2	B	41.3	E
Conner St Entr Ramp	Ramp	17.1	B	32.7	D
East of Conner St Entr Ramp	Basic	17.6	в	35.3	E
Westbound 1-94					
East of Conner St Exit Ramp	Basic	33.9	D	21.2	c
Conner St Exit Ramp	Ramp	36.1	E	21.0	c
Conner St Exit Ramp to Conner St Entr Ramp	Basic	46.5	F	19.2	c
NB \& SB Conner St Entr Ramps	Ramp	41.8	E	20.4	c
SB Conner St Entr Ramp to French Rd Entr Ramp	Basic	37.1	E	21.7	c
French Rd Entr Ramp to Gratiot Ave Exit Ramp	Ramp*	42.3	E	24.8	c
Gratiot Ave Exit Ramp to Gratiot Ave Entr Ramp	Basic	42.1	E	25.0	c
Gratiot Ave Entr Ramp to M-53 Exit Ramp	Ramp*	41.9	E	25.3	c
M-53 Exit Ramp to M-53 Entr Ramp	Basic	47.5	F	26.0	c
M-53 Entr Ramp	Ramp	47.4	F	26.7	c
M-53 Entr Ramp to Mt Elliott St Exit Ramp	Basic	47.2	F	27.3	D
Mt Elliott St Exit Ramp	Ramp	46.1	F	26.2	c
Mt Elliott St Exit Ramp to Harper Ave Entr Ramp	Basic	50.4	F	26.4	D
Harper Ave Entr Ramp	Ramp	52.2	F	26.8	c
Harper Ave Entr Ramp to Chene St Entr Ramp	Basic	54.0	F	27.2	D
Chene St Entr Ramp tol-75 Exit Ramp	Weave	40.0	E	24.1	c
$1-75$ Exit Ramp to Beaubien St Exit Ramp	Basic	41.1	E	21.5	c
Beaubien St Exit Ramp	Ramp	32.7	D	21.3	c
Beaubien St Exit Ramp to $1-75$ Entr Ramp	Basic	29.5	D	20.5	c
$1-75$ Entr Ramp	Ramp	41.1	E	31.6	D
1-75 Entr Ramp to John R St Entr Ramp	Basic	46.5	F	41.7	E
John R St Entr Ramp to M-10 Exit Ramps	Ramp*	43.5	F	46.0	F
M-10 Exit Ramps to M-10 Entr Ramps	Basic	26.2	D	59.8	F
M-10 Entr Ramps	Ramp	24.5	c	68.1	F
Trumbull Ave Entr Ramp to Linwood St Exit Ramp	Ramp*	31.1	D	46.7	F
Linwood St Exit Ramp to $1-96$ Exit Ramp	Basic	34.9	D	50.6	F
1-96 Exit Ramp	Ramp	33.9	D	40.1	E
1-96 Exit Ramp to Grand River Ave Entr Ramp	Basic	21.1	c	21.6	c
Grand River Ave Entr Ramp	Ramp	21.6	c	22.5	c
1-96 Entr Ramp to Grand Blvd Exit Ramp	Weave	20.2	c	23.1	c
Northbound M10					
South of Forest Ave Exit Ramp	Basic	16.8	B	26.1	D
Forest Ave Exit Ramp	Ramp	17.3	B	26.8	c
Forest Ave Exit Ramp to Forest Ave Entr Ramp	Basic	13.6	B	23.5	c
Forest Ave Entr Ramp to 1-94 S-E Exit Ramp	Weave	14.3	B	29.9	D
1-94 S-W Exit Ramp	Ramp	15.0	B	30.7	D
1 -94 S-W Exit Ramp to I-94 E-N Entr Ramp	Basic	12.9	B	25.2	c
$1-94 \mathrm{E}-\mathrm{N}$ Entr Ramp to 1-944 W-N Entr Ramp	Basic	16.2	B	33.0	D
1-94 W-N Entr Ramp to Milwaukee Ave Exit Ramp	Weave	18.2	B	32.8	D
Milwaukee Ave Exit Ramp to Grand Blvd Entr Ramp	Basic	15.4	B	28.3	D
North of Grand Blvd Entr Ramp	Basic	13.5	B	27.4	D
Southbound M10					
North of Grand Blvd Exit Ramp	Basic	25.1	c	17.0	в
Grand Blvd Exit Ramp to Milwaukee Ave Entr Ramp	Basic	32.1	D	20.2	c
Milwaukee Ave Entr Ramp to 1-94 N-W Exit Ramp	Weave	25.2	c	19.7	B
1-94 N-E Exit Ramp	Ramp	30.1	D	20.4	c
1-94 N-E Exit Ramp to 1-94 Entr Ramps	Basic	27.1	D	16.6	B
1-94 Entr Ramps to Forest Ave Exit Ramp	Weave	30.7	D	17.6	B
Forest Ave Exit Ramp to Forest Ave Entr Ramp	Basic	26.5	D	16.7	B
Forest Ave Entr Ramp	Ramp	27.8	c	18.6	B
South of Forest Ave Entr Ramp	Basic	27.9	D	18.7	c
Northbound 1-75					
South of Warren Ave Exit Ramp	Basic	15.1	B	18.2	c
Warren Ave Exit Ramp to 1-94 Exit Ramps	Basic	20.7	c	23.9	c
1 1-94 Exit Ramps to Warren Ave Entr Ramp	Basic	20.9	c	25.6	c
Warren Ave Entr Ramp	Ramp	22.4	c	27.5	c
Warren Ave Entr Ramp to l-94 E-N Entr Ramp	Basic	22.2	c	29.3	D
1-944 E-N Entr Ramp to 1-944 W-N Entr Ramp	Basic	24.0	c	29.4	D
1-94 W-N Entr Ramp to Clay St Exit Ramp	Ramp*	26.5	c	32.7	D
Clay St Exit Ramp to Clay St Entr Ramp	Basic	18.8	c	28.3	D
North of Clay St Entr Ramp	Basic	15.8	B	25.0	c
Southbound 1-75					
North of Clay St Exit Ramp	Basic	30.3	D	20.7	c
Clay St Exit Ramp to Clay St Entr Ramp	Basic	36.6	L	27.3	D
Clay St Entr Ramp to 1-94 Exit Ramps	Weave	41.0	E	38.1	E
1-94 Exit Ramps to Warren Ave Exit Ramp	Basic	39.0	E	24.2	c
Warren Ave Exit Ramp	Ramp	35.3	E	24.0	c
Warren Ave Exit Ramp to 1-94 Entr Ramps	Basic	25.9	c	20.0	c
1-94 Entr Ramps to Warren Ave Entr Ramp	Basic	27.7	D	19.6	c
South of Warren Ave Entr Ramp	Basic	22.6	c	16.9	B

2.4 Future (2040) No-Build Peak Period Traffic Operations

Traffic volumes were forecasted for the year 2040 using travel demand model data. A detailed overview of how the volumes were grown to the build year 2040 can be found in "TM 3 - I-94 Traffic Volume Forecasting" technical memorandum in Appendix B. To analyze a No-Build condition, the forecasted volumes were applied to the calibrated base year simulation models for the a.m. and p.m. peak periods. The models were then run, and output was collected assuming no changes to the study area. Sections 2.4.1 and 2.4.2 describe the traffic operations.

2.4.1 A.M. Peak Period Operational Results

Exhibit 3 shows the a.m. future No-Build operational performance of the I-94 corridor, plus surrounding intersections.

Mainline

The corridor is expected to degrade compared to the existing conditions if no action is taken. As shown in Table E, over 50 percent of the I-94 corridor is forecasted to operate at a LOS E or F during the a.m. peak period. The eastbound direction of I-94 operates at a LOS F from the western edge of the study area to Rosa Parks Boulevard and from the M-10 entrance-ramp to Woodward Avenue. A small section between Frontenac Avenue and M-53 operates at a LOS E. The rest of the study area eastbound corridor operates at a LOS D or better.

In the westbound direction, vehicles positioning for the I-75 interchange cause backups on the I94 mainline. Level of service F extends from the eastern edge of the study area to I-75. In the existing conditions described in Section 2.3, the delay extending back from the l-75 interchange was not as severe as it is forecasted by 2040. Two westbound sections of I-94 operate at a LOS E . The first is between the $\mathrm{I}-75$ entrance-ramp and $\mathrm{M}-10$, and the other is from the Linwood Street exit-ramp to the I-96 interchange.

Level of service E and F extend through the analysis area in the southbound (peak) direction of $\mathrm{M}-10$. In the existing condition, the levels of service were C and D . Network deterioration also occurs in the southbound direction of I-75. The northbound directions of I-75 and M-10 operate at acceptable levels of service but have worsened compared to the existing conditions.

Table E: A.M. Future No-Build Segments on I-94 with LOS E or F

Segment	Direction	Length $(\mathbf{M i)}$	Percent of I-94 Study Area Corridor
Analysis area western edge to Rosa Parks Blvd	EB	1.17	8.07%
M-10 entrance-ramp to Woodward Ave	EB	0.27	1.86%
Frontenac Ave to M-53 exit-ramp	EB	0.16	1.12%
Analysis area eastern edge to I-75	WB	4.41	30.41%
I-75 entrance-ramp to M-10 entrance-ramp	WB	1.07	7.38%
Linwood St exit-ramp to I-96 exit-ramp	WB	0.33	2.28%
Total of all segments	EB/WB	7.41	51.12%

Note: Analysis area is approximately 14.5 miles (7.25 miles one way). Lengths are an approximation.

Arterial Intersections

There are no intersections that perform at LOS E or F. The only intersection that performs at a LOS D is Harper Avenue at Burns Avenue. The rest operate at LOS C or better.

2.4.2 P.M. Peak Period Operational Results

Exhibit 4 shows the p.m. future No-Build operational performance of the I-94 corridor, plus surrounding intersections.

Mainline
Roughly 95 percent of the I-94 corridor is expected to operate at a LOS E or F during the p.m. peak period by 2040 (see Table F). Level of service E and F also exist in the northbound directions of $\mathrm{I}-75$ and $\mathrm{M}-10$. The westbound vehicles positioning to exit at $\mathrm{I}-75$ and $\mathrm{M}-10$ cause backup on the I-94 mainline. This is a change from the existing p.m. conditions. Improvements clearly must be made to the corridor prior to 2040 to mitigate these conditions.

May 9, 2019

Table F: P.M. Future No-Build Segments on I-94 with LOS E or F

Segment	Direction	Length $(\mathbf{M i)}$	Percent of l-94 Study Area Corridor
Analysis area western edge to Conner St entrance-ramp	EB	7.16	49.38%
Analysis area eastern edge to I-96 exit-ramp	WB	6.67	46.00%
Total of all segments	EB/WB	13.83	95.38%

Note: Analysis area is approximately 14.5 miles (7.25 miles one way). Lengths are an approximation.

Arterial Intersections

There are no intersections that perform at LOS E or F. Ferry Street at I-75 southbound Frontage Road is the one intersection that performs at a LOS D.

Exhibit 3

I-94 IACR Study Area
2040 No Build AM Modeled Level of Service

Exhibit 4

I-94 IACR Study Area
2040 No Build PM Modeled Level of Service

Segment	$\begin{aligned} & \text { Segment } \\ & \text { Type } \end{aligned}$	Existing AM Peak		No Build AM Peak		Existing PM Peak		No Build PM Peak		
		$\begin{array}{\|c\|} \hline \text { Density } \\ (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{array}$	LOS	$\begin{gathered} \text { Density } \\ (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{gathered}$	Los	$\begin{gathered} \text { Density } \\ (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{gathered}$	Los	$\begin{array}{\|c\|} \hline \text { Density } \\ (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{array}$	LOS	
Eastbound 1-94										
Grand Blvd Entr Ramp to --96 Exit Ramp	Weave	45.3	F	69.5	F	27.5	c	71.0	F	
Grand River Ave Exit Ramp	Ramp	53.4	F	82.4	F	26.8	c	88.4	F	
Grand River Ave Exit Ramp to l-96 S-E Entr Ramp	Basic	84.3	F	125.5	F	38.5	E	124.6	F	
1-96 S-E Entr Ramp	Ramp	95.7	F	114.9	F	55.0	F	127.0	F	
1-94 N-E Entr Ramp	Ramp	59.2	F	67.5	f	52.0	F	85.1	F	
Linwood St Entr Ramp	Ramp	47.7	F	51.9	F	53.8	F	82.5	F	
14th St Entr Ramp to Trumbull Ave Exit Ramp	Weave	25.5	c	25.4	c	41.4	E	56.5	F	
M-10 Exit Ramps	Ramp	26.5	c	28.6	D	55.6	F	83.6	F	
M-10 Exit Ramps to M-10 Entr Ramps	Basic	20.1	c	24.7	c	46.6	F	69.4	F	
M-10 Entr Ramps to John R St Exit Ramp	Ramp*	37.5	E	44.6	F	56.9	F	59.2	F	
John R St Exit Ramp to - -77 Exit Ramp	Basic	29.6	D	31.2	D	62.6	F	62.0	F	
$1-75$ Exit Ramp	Ramp	28.4	D	30.3	D	95.3	F	98.4	F	
$1-75$ Exit Ramp to Beaubien St Entr Ramp	Basic	14.7	B	17.3	B	102.2	F	81.6	F	
Beaubien St Entr Ramp to Russell St Exit Ramp	Weave	13.0	B	14.3	B	92.5	+	71.3	F	
Russell St Exit Ramp to -75 Entr Ramp	Basic	15.2	B	17.4	B	74.9	F	72.9	F	
1-75 Entr Ramp to Chene St Exit Ramp	Weave	15.9	B	18.1	B	27.1	c	35.4	E	
Chene St Exit Ramp to Chene St Entr Ramp	Basic	21.3	c	23.7	c	32.0	D	71.3	F	
Chene St Entr Ramp to Mt Elliott St Exit Ramp	Weave	16.8	B	21.2	c	45.2	F	72.2	F	
Mt Elliott St Exit Ramp to Mt Elliott St Entr Ramp	Basic	22.9	c	29.4	D	45.3	F	53.3	F	
Mt Elliott St Entr Ramp	Ramp	21.4	c	25.2	c	38.6	E	46.6	F	
Mt Elliott St Entr Ramp to M-53 Exit Ramp	Basic	22.9	c	28.1	D	43.8	E	52.4	F	
M-53 Exit Ramp	Ramp	28.4	D	37.8	E	58.4	F	69.5	F	
M-53 Exit Ramp to M-53 Entr Ramp	Basic	24.9	c	29.5	D	38.9	E	42.7	E	
M-53 Entr Ramp to Gratiot Ave Exit Ramp	Ramp*	19.6	B	23.1	c	29.7	D	38.5	E	
Gratiot Ave Exit Ramp To Gratiot Ave Entr Ramp	Basic	20.3	c	21.1	c	39.1	E	56.0	F	
Gratiot Ave Entr Ramp to French Rd Exit Ramp	Ramp*	17.6	B	18.7	B	32.3	D	42.8	E	
French Rd Exit Ramp to french Rd Entr Ramp	Basic	20.2	c	23.0	c	39.6	E	52.3	F	
French Rd Entr Ramp to Conner St Exit Ramp	Ramp*	18.7	B	21.0	c	31.6	D	53.0	F	
Conner St Exit Ramp to Conner St Entr Ramp	Basic	17.2	B	19.4	c	41.3	E	68.6	F	
Conner St Entr Ramp	Ramp	17.1	B	19.6	B	32.7	D	34.1	D	
East of Conner St Entr Ramp	Basic	17.6	B	20.2	c	35.3	E	37.4	E	
Westbound 1-94										
East of Conner St Exit Ramp	Basic	33.9	D	79.7	F	21.2		125.6	F	
Conner St Exit Ramp	Ramp	36.1	E	85.2	F	21.0	c	130.6	F	
Conner St Exit Ramp to Conner St Entr Ramp	Basic	46.5	F	95.2	F	19.2	c	136.9	F	
NB \& SB Conner St Entr Ramps	Ramp	41.8	E	74.3	F	20.4	c	125.2	F	
SB Conner St Entr Ramp to French Rd Entr Ramp	Basic	37.1	E	53.5	f	21.7	c	113.5	f	
French Rd Entr Ramp to Gratiot Ave Exit Ramp	Ramp*	42.3	E	62.5	F	24.8	c	121.8	F	
Gratiot Ave Exit Ramp to Gratiot Ave Entr Ramp	Basic	42.1	E	61.5	F	25.0	c	115.2	F	
Gratiot Ave Entr Ramp to M-53 Exit Ramp	Ramp*	41.9	E	60.4	F	25.3	c	108.6	F	
M-53 Exit Ramp to M-53 Entr Ramp	Basic	47.5	F	73.2	F	26.0	c	123.1	F	
M-53 Entr Ramp	Ramp	47.4	F	64.5	F	26.7		113.1	F	
M-53 Entr Ramp to Mt Elliott St Exit Ramp	Basic	47.2	F	55.7	F	27.3	D	103.0	F	
Mt Elliott St Exit Ramp	Ramp	46.1	F	54.8	F	26.2	c	105.1	F	
Mt Elliott St Exit Ramp to Harper Ave Entr Ramp	Basic	50.4	F	62.8	F	26.4	D	118.2	F	
Harper Ave Entr Ramp	Ramp	52.2	F	61.6	F	26.8	c	109.3	F	
Harper Ave Entr Ramp to Chene St Entr Ramp	Basic	54.0	F	60.4	F	27.2	D	100.4	F	
Chene St Entr Ramp to $1-75$ Exit Ramp	Weave	40.0	E	43.9	F	24.1	c	63.2	F	
$1-75$ Exit Ramp to Beaubien St Exit Ramp	Basic	41.1	E	45.5	F	21.5	c	69.4	F	
Beaubien St Exit Ramp	Ramp	32.7	D	30.6	D	21.3	c	61.9	F	
Beaubien St Exit Ramp to 1-75 Entr Ramp	Basic	29.5	D	26.1	D	20.5	c	69.4	F	
$1-75$ Entr Ramp	Ramp	41.1	E	35.3	E	31.6	D	109.5	F	
1.75 Entr Ramp to John R St Entr Ramp	Basic	46.5	F	38.3	E	41.7	E	120.0	F	
John R St Entr Ramp to M-10 Exit Ramps	Ramp*	43.5	F	39.3	E	46.0	F	82.5	F	
M-10 Exit Ramps to M-10 Entr Ramps	Basic	26.2	D	36.3	E	59.8	F	89.7	F	
M-10 Entr Ramps	Ramp	24.5	c	29.7	D	68.1	F	79.2	F	
Trumbull Ave Entr Ramp to Linwood St Exit Ramp	Ramp*	31.1	D	33.4	D	46.7	F	49.5	F	
Linwood St Exit Ramp to - -96 Exit Ramp	Basic	34.9	D	36.7	E	50.6	F	52.5	F	
1-96 Exit Ramp	Ramp	33.9	D	35.9	E	40.1	E	41.4	E	
$1-96$ Exit Ramp to Grand River Ave Entr Ramp	Basic	21.1	c	23.1	c	21.6	c	23.5	c	
Grand River Ave Entr Ramp	Ramp	21.6	c	23.6	c	22.5	c	24.4	c	
1-96 Entr Ramp to Grand Blvd Exit Ramp	Weave	20.2	c	22.1	c	23.1	c	24.5	c	
Northbound M10										
South of Forest Ave Exit Ramp	Basic	16.8	B	21.8	c	26.1	D	74.8	F	
Forest Ave Exit Ramp	Ramp	17.3	B	22.4	c	26.8	C	77.6	F	
Forest Ave Exit Ramp to Forest Ave Entr Ramp	Basic	13.6	B	18.2	c	23.5	c	81.1	F	
Forest Ave Entr Ramp to 1-944 S-E Exit Ramp	Weave	14.3	B	20.2	c	29.9	D	64.6	F	
1-94 S-W Exit Ramp	Ramp	15.0	B	21.5	c	30.7	D	59.6	F	
1-94 S-W Exit Ramp to 1-94 E-N Entr Ramp	Basic	12.9	B	21.5	c	25.2	c	80.3	F	
1-94E-N Entr Ramp to 1-944 W-N Entr Ramp	Basic	16.2	B	28.1	D	33.0	D	96.4	F	
1 -94 W-N Entr Ramp to Milwaukee Ave Exit Ramp	Weave	18.2	B	30.3	D	32.8	D	42.9	E	
Milwaukee Ave Exit Ramp to Grand Blvd Entr Ramp	Basic	15.4	B	17.6	B	28.3	D	31.3	D	
North of Grand Blvd Entr Ramp	Basic	13.5	B	15.7	B	27.4	D	27.4	D	
Southbound M10										
North of Grand Blvd Exit Ramp	Basic	25.1	c	43.7	E	17.0	B	36.8	E	
Grand Blvd Exit Ramp to Milwaukee Ave Entr Ramp	Basic	32.1	D	51.2	F	20.2	c	45.4	F	
Milwaukee Ave Entr Ramp to 1-94 N -W Exit Ramp	Weave	25.2	c	41.4	E	19.7	B	38.7	E	
1-944-E Exit Ramp	Ramp	30.1	D	57.5	F	20.4	c	37.2	E	
1-94 N-E Exit Ramp to --94 Entr Ramps	Basic	27.1	D	45.4	F	16.6	B	32.5	D	
$1-94$ Entr Ramps to Forest Ave Exit Ramp	Weave	30.7	D	40.1	E	17.6	B	30.6	D	
Forest Ave Exit Ramp to Forest Ave Entr Ramp	Basic	26.5	D	31.2	D	16.7	B	25.9	c	
Forest Ave Entr Ramp	Ramp	27.8	c	33.0	D	18.6	B	26.8	c	
South of Warren Ave Exit Ramp	Basic	15.1	B	27.2	D	18.2	c	40.3	E	
Warren Ave Exit Ramp to l-94 Exit Ramps	Basic	20.7	c	30.3	D	23.9		36.5	E	
1-94 Exit Ramps to Warren Ave Entr Ramp	Basic	20.9	c	27.4	D	25.6	c	37.4	E	
Warren Ave Entr Ramp	Ramp	22.4	c	28.8	D	27.5	c	38.2	E	
Warren Ave Entr Ramp to l-94 E-N Entr Ramp	Basic	22.2	c	28.7	D	29.3	D	41.5	E	
1-94 E-N Entr Ramp to 1-94 W-N Entr Ramp	Basic	24.0	c	30.1	D	29.4	D	38.9	E	
$1-94$ W-N Entr Ramp to Clay St Exit Ramp	Ramp*	26.5	c	34.0	D	32.7	D	40.9	E	
Clay St Exit Ramp to Clay St Entr Ramp	Basic	18.8	c	23.0	c	28.3	D	36.4	E	
North of Clay St Entr Ramp	Basic	15.8	B	19.3	c	25.0	c	31.5	D	
Southbound 1-75										
North of Clay St Exit Ramp	Basic	30.3	D	35.2	E	20.7	c	72.3	F	
Clay St Exit Ramp to Clay St Entr Ramp	Basic	36.6	,	39.6	E	27.3	D	107.2	F	
Clay St Entr Ramp to 1-94 Exit Ramps	Weave	41.0	E	43.2	F	38.1	E	65.1	F	
$1-94$ Exit Ramps to Warren Ave Exit Ramp	Basic	39.0	E	39.1	E	24.2	c	14.8	B	
Warren Ave Exit Ramp	Ramp	35.3	E	36.4	E	24.0	c	14.5	B	
Warren Ave Exit Ramp to 1-94 Entr Ramps	Basic	25.9	c	28.3	D	20.0	c	12.5	B	
l-94 Entr Ramps to Warren Ave Entr Ramp	Basic	27.7	D	28.4	D	19.6	c	12.8 11.9	B	

2.5 Crash Analysis

Crash data for 2011 through 2015 was obtained from the Transportation Improvement Association (TIA). The TIA is an independent organization focused on transportation safety in Michigan. The TIA houses traffic crash data for the state. Data was collected for the I-94 mainline, ramps, interchanges and approximately 500 feet past each interchange intersection on arterials.

2.5.1 Existing Conditions

The corridor was divided into 19 segments for analysis. Segments represent a change in the characteristics of the roadway, typically these breaks are at merge/diverge points along the mainline. Ramp terminals were analyzed separately, each with a 400-foot radius. Ramp terminals within 400 -feet of each other were not overlapped.

Crashes were analyzed based on crash severity and collision type. Crash severity is categorized based on the level of injury during a crash. The state of Michigan uses five categories:

- K - Fatal Injury: An injury which results in death
- A - Incapacitating Injury: Any injury other than fatal which prevents normal activities and generally requires hospitalization
- B - Non-Incapacitating Injury: Any minor injury that is evident at the scene
- C - Possible Injury: Any possible injury that is reported or claimed
- O - No Injury: Also known as a Property Damage Only (PDO) Crash - No indication of injury

The state of Michigan considers the collision type to be the nature of the first impact in an incident. The classification system has 12 categories; however, within the corridor, only 9 categories are represented. Crash types within the corridor include angle, head-on, rear end, rear end - left turn, rear end - right turn, sideswipe - opposite direction, sideswipe - same direction, single motor vehicle, and other. Absent within the corridor are crashes classified as head-on - left turn, backing and unknown.

Mainline Analysis

Between 2011 and 2015, 4,247 incidents occurred along the I-94 mainline within the corridor. Of those incidents, twelve were fatal accounting for 0.25 percent of all crashes. But the data shows that fatal crashes have increased over the five-year period. Over 75 percent of all crashes within the five-year period were PDO crashes. The next highest percent was Injury C (19 percent), meaning possible injuries. Table \mathbf{H} shows the breakdown in crashes by severity and year.

Table H-Existing Crash Severity by Year

	$\mathbf{2 0 1 1}$	$\mathbf{2 0 1 2}$	$\mathbf{2 0 1 3}$	$\mathbf{2 0 1 4}$	$\mathbf{2 0 1 5}$	Total
Fatal	$\mathbf{1}$	1	3	3	4	12
Serious Injury	6	17	14	5	13	55
Minor Injury	35	37	30	34	34	170
Possible Injury	205	167	126	140	149	787
PDO	635	544	620	663	761	3,223
Total	882	766	793	845	961	4,247

Source: TIA
Crash types for the mainline were predominately classified as rear end, sideswipe - same direction, or single motor vehicle crashes. These crash types represent over 90 percent of all crashes within the five-year period. Rear end and sideswipe crashes are typically attributed to lower speed crashes in highly congested areas. Typical causes of single vehicle crashes are substandard roadway geometry (which is prevalent in the I-94 corridor), a vehicle losing control or a vehicle being run off the road. The year 2011 saw an abnormally high amount of angle crashes, which indicates that there may have been a variable that led to the increase, such as construction within the area. Table I shows the breakdown of crashes by type.

Table I - Existing Crash Types by Year

Crash Type	$\mathbf{2 0 1 1}$	$\mathbf{2 0 1 2}$	$\mathbf{2 0 1 3}$	$\mathbf{2 0 1 4}$	$\mathbf{2 0 1 5}$	Total
Angle	27	6	5	7	7	52
Head On	2	2	1	4	3	12
Rear End	360	308	358	341	463	1,830
Rear End - Left Turn	2	5	1	2	4	14
Rear End - Right Turn	0	1	3	3	3	10
Sideswipe - Opposite						
Direction	4	1	1	1	1	8
Sideswipe - Same Direction	184	195	199	211	222	1,011
Single Motor Vehicle	251	207	195	232	208	1,093
Other	52	41	30	44	50	217
Total	882	766	793	845	961	4,247

Source: TIA
Crash types for all K/A (Fatal and Incapacitating Injury) for the mainline were predominately single motor vehicle, rear end, or sideswipe - same direction. These crash types account for over 85\% of all K/A crashes. No head-on crashes (or assumed wrong-way driving) resulted in K/A injuries. Table J shows the breakdown of crash types for K/A crashes along the mainline.

Table J: K/A Crashes on I-94

Crash Type	$\mathbf{2 0 1 1}$	$\mathbf{2 0 1 2}$	$\mathbf{2 0 1 3}$	$\mathbf{2 0 1 4}$	$\mathbf{2 0 1 5}$	Total
Angle	0	0	0	0	1	1
Head On	0	0	0	0	0	0
Rear End	3	2	5	2	5	17
Rear End - Left Turn	0	0	0	0	0	0
Rear End - Right Turn	0	0	0	0	0	0
Sideswipe - Opposite						
Direction	0	0	0	0	0	0
Sideswipe - Same Direction	0	2	5	2	4	13
Single Motor Vehicle	4	11	6	4	3	28
Other	0	3	1	0	4	8
Total	7	18	17	8	17	67

Source: TIA
The density of crashes and the location of high crash areas are important when determining areas to target improvements. Utilizing ArcGIS software, a crash density heat map was developed for the I-94 mainline. It shows high occurrences of crashes near the M-10, I-75 and Mt Elliott Street interchanges. Higher crash densities at the M-10 and I-75 system to system interchanges are expected given the high volume of vehicles. The high density at Mt Elliott Street might be attributed to the non-traditional interchange design at the location. The east facing ramps are at the beginning of a curve segment and the west facing ramps are disconnected. Figure 17 shows the crash density.

Figure 17 - Existing Crash Density

Source: TIA, ArcGIS
Crash rates were calculated for each segment utilizing 2015 average daily traffic volumes and comparing them to the Michigan statewide average. Statewide averages were not available for the date range of the analysis. After consultation with MDOT it was decided to utilize 10-year averages from 2004 to 2013 as well as a location specific rates calculated using the Highway Safety Manual (HSM). Table K displays the statewide crash rates.

Table K: Statewide Crash Rates

Type	Source	Total Crash Rate (HMVMT)	Fatal Crash Rate (HMVMT)
Interstate Routes	2013 Michigan Traffic Crash Facts Report, 2004 to 2013 Average	119	0.4
6 Lane Freeway	2014 to 2016 MDOT HSM Analysis	80.134	0.301

Table L displays the I-94 mainline crash rates for the study area corridor. When compared to the statewide crash rates found in Table K, all but one segment on I-94 have higher total crash rates than the statewide average and many have a higher fatal crash rate (highlighted in yellow). Several segments are rated more than triple the statewide average.

Table L: Mainline Crash Rates

Segment	Total Crashes $\mathbf{(2 0 1 1 -}$ $\mathbf{2 0 1 5)}$	Fatal Crashes $\mathbf{2 0 1 1 -}$ $\mathbf{2 0 1 5)}$	Total Crash Rate		
(HMVMT)					Fatal Crash Rate (HMVMT)
:---:					
I-94 Conner St Interchange					
I-94 EB Diverge to Conner St					
169					
71					
I-94 WB Ramp Merge from Conner St					
French Rd Interchange					
I-94 Gratiot Ave East Ramps to French Rd					
West Ramps					

Intersection Analysis
Fifteen intersections, all of which are ramp terminals within the study area, were analyzed as part of the safety analysis. A 400-foot radius from the center of each intersection was used as the boundary to collect crash data. Between 2011 and 2015, a total of 379 incidents occurred at the fifteen intersections. Of those incidents, two were fatal, accounting for 0.5 percent of all intersection crashes. Over 75 percent of all crashes over the five-year period were PDO crashes. The next closest severity type was Injury C, meaning possible injuries, with 16 percent of the total. Table M shows the breakdown of crash severity by year for intersections.

Table M: Intersection Crash Severity

Severity	$\mathbf{2 0 1 1}$	$\mathbf{2 0 1 2}$	$\mathbf{2 0 1 3}$	$\mathbf{2 0 1 4}$	$\mathbf{2 0 1 5}$	Total
Fatal	0	0	0	1	1	2
Serious Injury	2	2	1	0	2	7
Minor Injury	2	1	9	4	4	20
Possible Injury	9	10	15	15	13	62
PDO	60	42	65	56	65	288
Total	73	55	90	76	85	379

Source: TIA
Incidents at study intersections were predominately classified as rear end, angle and sideswipe - same direction. These types of crashes represent approximately 75 percent of all crashes within the five-year period. Table \mathbf{N} shows the breakdown of crashes by type at all intersections.

Table N: Intersection Crash Type

Crash Type	$\mathbf{2 0 1 1}$	$\mathbf{2 0 1 2}$	$\mathbf{2 0 1 3}$	$\mathbf{2 0 1 4}$	$\mathbf{2 0 1 5}$	Total
Angle	7	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{2 8}$	$\mathbf{2 0}$	84
Head On	3	2	1	1	0	7
Head On - Left Turn	1	1	2	3	4	11
Rear End	26	20	30	16	24	116
Rear End - Left Turn	0	0	0	0	2	2
Rear End - Right Turn	1	0	0	0	0	1
Sideswipe - Opposite Direction	5	1	2	0	2	10
Sideswipe - Same Direction	15	9	22	15	22	83
Single Motor Vehicle	9	2	10	10	5	36
Other	6	6	8	3	6	29
Total	73	55	90	76	85	379

Source: TIA
Four intersections experienced more than 30 crashes over the five-year period. These include the eastbound and westbound ramp terminals at Gratiot Avenue and Mt Elliott Street. These four intersections experienced 215 total crashes over the five-year period, of which 75 percent were rear end, sideswipe - same direction, or angle crashes. As would be expected, these are some of the highest volume arterials in the study area. The highest frequency of incidents was at the eastbound ramp terminal of Gratiot Avenue with 102 crashes over the five-year period. A breakdown of all intersection crashes is included in Table \mathbf{O}.

Table O: Total Crashes by Intersection

Intersection	Total
Gratiot Ave EB Ramp Terminal	102
Mt Elliott St WB Off Ramp Terminal	45
Mt Elliott St EB On Ramp Terminal	35
Gratiot Ave WB Ramp Terminals	33
Grand River Ave WB On Ramp Terminal	23
Van Dyke Ave WB Ramp Terminals	23
Trumbull St EB Off Ramp Terminal	22
John R St EB Off Ramp Terminal	20
John R St WB On Ramp Terminal	16
Trumbull St WB On Ramp Terminal	15
Van Dyke Ave EB Ramp Terminals	14
French Rd EB Ramp Terminal	10
Linwood St WB Off Ramp Terminal	10
Linwood St EB On Ramp Terminal	7
French Rd WB On Ramp Terminal	4
Source: TIA	

2.5.2 Future No-Build

A future predictive crash analysis was conducted using the Interactive Highway Safety Design Model (IHSDM) software developed by the Federal Highway Administration (FHWA) for future nobuild and build scenarios. For the purposes of comprehension and comparison, the results of the No-Build are analyzed in detail in Section 3.3 - Safety Analysis.

2.6 Summary

Traffic operations were modeled using the year 2014 as the baseline (existing) condition. Operations in both the a.m. and p.m. peak periods show significant delay within the l-94 corridor. These conditions within the I-94 study area, if left unchanged, will severely worsen by the year 2040 with 95% of the corridor operating at a LOS E or F during the p.m. peak period.

The corridor experiences more total crashes per hundred million vehicle miles traveled than the statewide average. Enhancements to the corridor are necessary to improve operations and safety by 2040.

May 9, 2019
3.0 Policy Point 1: Build Alternative

An operational and safety analysis has concluded that the proposed change in access does not have a significant adverse impact on the safety and operation of the Interstate facility (which includes mainline lanes, existing, new, or modified ramps, and ramp intersections with crossroad) or on the local street network based on both the current and the planned future traffic projections. The analysis should, particularly in urbanized areas, include at least the first adjacent existing or proposed interchange on either side of the proposed change in access (Title 23, Code of Federal Regulations (CFR), paragraphs 625.2(a), 655.603(d) and 771.111(f)). The crossroads and the local street network, to at least the first major intersection on either side of the proposed change in access, should be included in this analysis to the extent necessary to fully evaluate the safety and operational impacts that the proposed change in access and other transportation improvements may have on the local street network (23 CFR 625.2(a) and 655.603(d)). Requests for a proposed change in access should include a description and assessment of the impacts and ability of the proposed changes to safely and efficiently collect, distribute, and accommodate traffic on the Interstate facility, ramps, intersection of ramps with crossroad, and local street network (23 CFR 625.2(a) and 655.603(d)). Each request should also include a conceptual plan of the type and location of the signs proposed to support each design alternative (23 U.S.C. 109(d) and 23 CFR 655.603(d)).

3.1 Description of Build Alternative

The Build Alternative includes the following changes:

1. Adding continuous service drives and surface street intersections in parts of the corridor
2. An additional lane in each direction on I-94
3. Adding auxiliary lanes on I-94
4. Relocating or removing access points to l-94
5. Reconstruction of 15 interchanges on I-94, M-10 and I-75 including:
a. I-94 / Linwood Avenue and M-5 (Grand River) *
b. I-94 / 14th Street
c. I-94 / Trumbull Avenue *
d. I-94 / M-10
e. I-94 / John R Street, Brush Street, Beaubien Street, and Hastings Street
f. I-94 / I-75 *
g. I-94 / Russell Street
h. I-94 / Chene Street *
i. I-94 / Mount Elliott Street
j. I-94 / Van Dyke Avenue *
k. I-94 / Gratiot Avenue
I. I-94 / French Road
m. l-94 / Conner Avenue
n. M-10 / Forest Avenue and Calumet/Four Tops
o. M-10 / Grand Boulevard and Milwaukee Avenue
*Indicates no change in access

A comprehensive description of all the interchange improvements can be found in Section 1.4.

3.2 Peak Period Traffic Operations Analysis

Sections 3.2.1 and 3.2.2 describe the traffic operations for the Build Alternative. The calibrated Paramics models that were used to generate results in the existing and No-Build models were modified to match the roadway design of the Build Alternative for the year 2040.

3.2.1 A.M. Peak Period Operational Results

Exhibit 5 shows the a.m. Build Alternative operational performance of the I-94 corridor, plus surrounding intersections.

Mainline

Eleven percent of the I-94 analysis area performs at a LOS E. None of the I-94 corridor performs at a LOS F. This is an improvement from the No-Build where 51 percent of the I-94 analysis area performed at a LOS E or F. The improved performance compared to the No-Build is a result of the widening of I-94, plus the improvements made to the $\mathrm{M}-10$ and $\mathrm{I}-75$ interchanges. The areas that operate at a LOS E are listed in Table \mathbf{P}.

The northern limit of southbound M-10 down to Grand Boulevard is the only segment that operates at a LOS F. The northern limit of I-75 southbound down to the I-94 exit-ramp operates at a LOS E. The operations on both southbound segments approaching I-94 are still better compared to the No-Build alternative where LOS E and F extend southward past the I-94 system-to-system interchanges (see Exhibit 3).

Table P: A.M. Build Alternative Segments on I-94 with LOS E or F

Segment	Direction	Length $(\mathbf{M i)}$	Percent of I-94 Study Area Corridor
Analysis area western edge to I-96 exit-ramp	EB	0.24	1.65%
Analysis area eastern edge to Barrett Avenue	WB	0.25	1.72%
Between the Connor Street access ramps	WB	0.16	1.10%
Between M-53 access ramps	WB	0.37	2.55%
Elliot Street exit-ramp to Grand Boulevard	WB	0.59	4.07%
Total of all segments	EB/WB	1.61	11.10%

Note: Analysis area is approximately 14.5 miles (7.25 miles one way). Lengths are an approximation.

Arterial Intersections

All intersections in the a.m. peak period operate at a LOS C or better. Exhibit 5 displays one-way and two-way intersection operations for the cross streets of John R and Brush. Section 1.4 also discusses how the City of Detroit has the option to convert the north-south local streets of John R and Brush, within the study area limits, from one-way to two-way. Regardless of which option is chosen, both options are expected to experience LOS A or B in 2040.

3.2.2 P.M. Peak Period Operational Results

Exhibit 6 shows the p.m. Build Alternative operational performance of the I-94 corridor, plus surrounding roadways and intersections.

Mainline

Ninety-five percent of the I-94 corridor operates at an acceptable LOS in the p.m. peak hour of the Build Alternative. The corridor is improved compared to the No-Build Alternative, which is forecasted to have over 95 percent of the corridor operate at a LOS E or F by 2040 (see Exhibit 4). Table Q shows which segments operate at LOS E or F in the build scenario. A half-mile section from the Conner Street exit-ramp to the eastern limits of the analysis area is the only eastbound segment with LOS E or F. This is due to a transition from four-lanes down to three on I-94. Westbound, LOS E is forecasted between the Linwood Street exit-ramp to the I-96 exitramp. The widening of $\mathrm{I}-94$ plus the improvements made to the $\mathrm{M}-10$ and $\mathrm{I}-75$ system-to-system interchanges will minimize bottleneck areas, thus contributing to the improved performance of the corridor.

There are pockets of LOS E and F in the north and southbound directions of $\mathrm{M}-10$ and $\mathrm{I}-75$, but the level of congestion is less than what is projected in the No-Build Alternative. These improvements compared to the No-Build are the result of improved design at the system to system interchanges.

Table Q: P.M. Build Alternative Segments on I-94 with LOS E or F

Segment	Direction	Length $\mathbf{(M i)}$	Percent of I-94 Study Area Corridor
Conner Street exit-ramp to analysis area eastern edge	EB	0.46	3.17%
Linwood Street exit-ramp to I-96 exit-ramp	WB	0.32	2.21%
Total of all segments	EB/WB	0.78	5.38%

Note: Analysis area is approximately 14.5 miles (7.25 miles one way). Lengths are an approximation.

Arterial Intersections

The only intersection forecasted to operate at LOS E is Harper Avenue at Edsel Ford Service Drive.

Exhibit 6 displays one-way and two-way intersection operations for the cross streets of John R and Brush. Section 1.4 discusses how the City of Detroit has the option to convert the northsouth local streets of John R and Brush, within the study area limits, from one-way to two-way. Regardless of which option is chosen, both options are expected to experience acceptable LOS in 2040.

Exhibit 5

I-94 IACR Study Area
2040 Build AM Modeled Level of Service

Exhibit 6

I-94 IACR Study Area
2040 Build PM Modeled Level of Service

Table R: Build Alternative vs. No-Build Alternative LOS

No-Build Alternative						Build Alternative					
Segment	$\begin{gathered} \text { Segment } \\ \text { Type } \end{gathered}$	AM Peak		PM Peak		Segment	$\begin{gathered} \text { Segment } \\ \text { Type } \end{gathered}$	AM Peak		PM Peak	
		$\begin{gathered} \text { Density } \\ (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{gathered}$	Los	$\begin{array}{\|c\|} \hline \text { Density } \\ \text { (pc/mi/ln) } \end{array}$	cos			$\begin{array}{\|c\|} \hline \text { Density } \\ \text { (pc/mi/ln) } \end{array}$	Los	$\begin{array}{\|c\|} \hline \text { Density } \\ \text { (pc/mi/ln) } \end{array}$	Los
Eastbound I-94											
Grand Blvd Entr Ramp to $1-96$ Exit Ramp	Weave	69.5	F	71.0		Grand Blvd Entr Ramp to l-96 Exit Ramp	Weave	36.3	E	35.0	D
Grand River Ave Exit Ramp	Ramp	82.4	F	88.4		Grand River Ave Exit Ramp	Ramp	29.8	D	26.7	c
Grand River Ave Exit Ramp to 1-96 S-E Entr Ramp	Basic	125.5	F	124.6		Grand River Ave Exit Ramp to --96 S-E Entr Ramp	Basic	29.6	D	25.3	c
1-96 S-E Entr Ramp	Ramp	114.9	F	127.0		1-966 S-E Entr Ramp to --96 N-E Entr Ramp	Basic	25.8	c	20.2	c
$1-94$ N-E Entr Ramp	Ramp	67.5	F	85.1		1 1-96 N-E Entr Ramp to Linwood St Entr Ramp	Basic	28.1	D	20.4	c
Linwood St Entr Ramp	Ramp	51.9	F	82.5	F	Linwood St Entr Ramp to Trumbull Ave Exit Ramp	Weave	24.6	c	17.0	B
14th St Entr Ramp to Trumbull Ave Exit Ramp	Weave	25.4	c	56.5	F	Trumbull Ave Exit Ramp to M-10 Exit Ramps	Basic	26.8	D	18.5	${ }^{\text {c }}$
M-10 Exit Ramps	Ramp	28.6	D	83.6	F	M-10 Exit Ramps to M-10 Entr Ramps	Basic	21.4	c	19.4	c
M-10 Exit Ramps to M-10 Entr Ramps	Basic	24.7	c	69.4	F	M-10 Entr Ramps to Brush St Exit Ramp	Weave	16.3	B	15.2	B
M-10 Entr Ramps to John R St Exit Ramp	Ramp*	44.6		59.2	F	Brush St Exit Ramp to $1-75$ Exit Ramps	Basic	15.9	B	13.7	B
John R St Exit Ramp to $1-75$ Exit Ramp	Basic	31.2	D	62.0	F	1.75 Exit Ramps to Lane Merge	Basic	11.6	B	13.2	B
1.75 Exit Ramp	Ramp	30.3	D	98.4		Lane Merge to Hastings St Entr Ramp	Basic	13.9	в	21.6	c
$1-75$ Exit Ramp to Beaubien St Entr Ramp	Basic	17.3	B	81.6		Hastings st Entr Ramp	Ramp	14.9	B	23.9	c
Beaubien St Entr Ramp to Russell St Exit Ramp	Weave	14.3	в	71.3		$1-75$ Entr Ramps to Chene St Exit Ramp	Weave	13.7	в	19.3	B
Russell 5 t Exit Ramp to 1.75 Entr Ramp	Basic	17.4	B	72.9	F	Chene St Exit Ramp to Chene St Entr Ramp	Basic	16.3	B	20.1	c
1.75 Entr Ramp to Chene St Exit Ramp	Weave	18.1	B	35.4	E	Chene St Entr Ramp to Mt Elliott St Exit Ramp	Weave	14.0	в	18.9	B
Chene St Exit Ramp to Chene St Entr Ramp	Basic	23.7	c	71.3		Mt Elliott St Exit Ramp to Mt Elliott St Entr Ramp	Basic	16.4	B	22.8	c
Chene St Entr Ramp to Mt Elliott St Exit Ramp	Weave	21.2	c	72.2	F	Mt Elliott St Entr Ramp to M-53 Exit Ramp	Weave	13.5	в	20.3	c
Mt Elliott St Exit Ramp to Mt Elliott St Entr Ramp	Basic	29.4	D	53.3	F	M-53 Exit Ramp to Lane Merge	Basic	15.6	B	30.0	D
Mt Elliott St Entr Ramp	Ramp	25.2	c	46.6	F	Lane Merge to M-53 Entr Ramp	Basic	19.4	c	28.2	D
Mt Elliott St Entr Ramp to M-53 Exit Ramp	Basic	28.1	D	52.4	F	M-53 Entr Ramp to Gratiot St Exit Ramp	Weave	15.8	в	23.6	c
M-53 Exit Ramp	Ramp	37.8	E	69.5	F	Gratiot St Exit Ramp to Gratiot St Entr Ramp	Basic	16.9	B	28.3	D
M-53 Exit Ramp to M-53 Entr Ramp	Basic	29.5	D	42.7	E	Gratiot St Entr Ramp to Conner St Exit Ramp	Weave	13.9	B	29.8	D
M-53 Entr Ramp to Gratiot Ave Exit Ramp	Ramp*	23.1	c	38.5	E	Conner St Exit Ramp to Lane Merge	Basic	15.8	B	37.8	E
Gratiot Ave Exit Ramp To Gratiot Ave Entr Ramp	Basic	21.1	c	56.0		Lane Merge to Conner St Entr Ramp	Basic	20.8	c	52.1	
Gratiot Ave Entr Ramp to French Rd Exit Ramp	Ramp*	18.7	B	42.8	E	Conner St Entr Ramp	Ramp	16.2	B	40.9	E
French Rd Exit Ramp to French Rd Entr Ramp	Basic	23.0	c	52.3	F	East of Conner St Entr Ramp	Basic	22.5	c	50.9	
French Rd Entr Ramp to Conner St Exit Ramp	Ramp*	21.0	c	53.0							
Conner St Exit Ramp to Conner St Entr Ramp	Basic	19.4	c	68.6							
Conner St Entr Ramp	Ramp	19.6	B	34.1	D						
East of Conner St Entr Ramp	Basic	20.2	c	37.4	E						
Westbound 1-94											
East of Conner St Exit Ramp	Basic	79.7	F	125.6		East of Conner St Exit Ramp	Basic	43.2	E	30.9	D
Conner St Exit Ramp	Ramp	85.2	F	130.6	F	Conner St Exit Ramp	Ramp	34.0	D	24.3	c
Conner St Exit Ramp to Conner St Entr Ramp	Basic	95.2	F	136.9	F	Conner St Exit Ramp to Lane Add	Basic	39.3	E	27.2	D
NB \& SB Conner St Entr Ramps	Ramp	74.3	F	125.2	F	Lane Add to Conner St Entr Ramp	Basic	31.1	D	21.0	c
SB Conner St Entr Ramp to French Rd Entr Ramp	Basic	53.5	F	113.5	F	Conner St Entr Ramp to Gratiot St Exit Ramp	Weave	25.1	c	16.3	
French Rd Entr Ramp to Gratiot Ave Exit Ramp	Ramp*	62.5	F	121.8	F	Gratiot St Exit Ramp to Gratiot St Entr Ramp	Basic	32.7	D	20.5	c
Gratiot Ave Exit Ramp to Gratiot Ave Entr Ramp	Basic	61.5	F	115.2		Gratiot St Entr Ramp to M-53 Exit Ramp	Weave	32.5	D	19.9	B
Gratiot Ave Entr Ramp to M-53 Exit Ramp	Ramp*	60.4		108.6		M-53 Exit Ramp to M-53 Entr Ramp	Basic	41.1		24.5	${ }^{\text {c }}$
M-53 Exit Ramp to M-53 Entr Ramp	Basic	73.2	F	123.1	F	M-53 Entr Ramp to Mt Elliott St Exit Ramp	Weave	34.1	D	20.5	c
M-53 Entr Ramp	Ramp	64.5		113.1	F	Mt Elliott St Exit Ramp to Mt Elliott St Entr Ramp	Basic	44.1	E	24.4	
M-53 Entr Ramp to Mt Elliott St Exit Ramp	Basic	55.7	F	103.0	F	Mt Elliott St Entr Ramp	Ramp	38.2	E	24.4	c
Mt Elliott St Exit Ramp	Ramp	54.8	F	105.1	F	Mt Elliott St Entr Ramp to Chene St Entr Ramp	Basic	43.0	E	25.7	c
Mt Elliott St Exit Ramp to Harper Ave Entr Ramp	Basic	62.8	F	118.2	F	Chene St Entr Ramp to 1-75 Exit Ramps	Weave	28.7	D	21.5	c
Harper Ave Entr Ramp	Ramp	61.6		109.3		Hastings St Exit Ramp	Ramp	27.3	c	18.3	B
Harper Ave Entr Ramp to Chene St Entr Ramp	Basic	60.4	F	100.4	F	Hastings St Exit Ramp to $1-75$ Entr Ramps	Basic	24.7	c	16.1	B
Chene St Entr Ramp to -75 Exit Ramp	Weave	43.9	F	63.2		1.75 Entr Ramps	Ramp	30.5	D	14.3	${ }^{8}$
1.75 Exit Ramp to Beaubien St Exit Ramp	Basic	45.5		69.4		Brush St Entr Ramp to M-10 Exit Ramps	Weave	26.4	c	18.7	B
Beaubien St Exit Ramp	Ramp	30.6	D	61.9		M-10 Exit Ramps to M-10 Entr Ramps	Basic	24.3	c	17.8	B
Beaubien St Exit Ramp to 175 Entr Ramp	Basic	26.1	D	69.4		M-10 Entr Ramps	Ramp	23.5		19.3	
1.75 Entr Ramp	Ramp	35.3	E	109.5	F	Trumbull Ave Entr Ramp to Linwood St Exit Ramp	Weave	22.2	c	23.2	c
1.75 Entr Ramp to John R St Entr Ramp	Basic	38.3	E	120.0	F	Linwood St Exit Ramp to --96 Exit Ramps	Basic	34.2	D	35.3	E
John R St Entr Ramp to M-10 Exit Ramps	Ramp*	39.3	E	82.5	F	1 -96 Exit Ramps to Lane Merge	Basic	27.6	-	33.5	D
$\mathrm{M}-10$ Exit Ramps to $\mathrm{M}-10$ Entr Ramps	Basic	36.3	E	89.7	F	Lane Merge to Grand River Ave Entr Ramp	Basic	21.8	c	23.7	c
M-10 Entr Ramps	Ramp	29.7	D	79.2	F	Grand River Ave Entr Ramp	Ramp	30.2	D	32.6	D
Trumbull Ave Entr Ramp to Linwood St Exit Ramp	Ramp*	33.4	D	49.5		1-96 Entr Ramp to Grand Blvd Exit Ramp	Weave	29.4	D	30.9	D
Linwood St Exit Ramp to 1-96 Exit Ramp	Basic	36.7	E	52.5							
1.96 Exit Ramp	Ramp	35.9	E	41.4	E						
1-96 Exit Ramp to Grand River Ave Entr Ramp	Basic	23.1		23.5							
Grand River Ave Entr Ramp	Ramp	23.6	c	24.4	c						
1-96 Entr Ramp to Grand Blvd Exxit Ramp	Weave	22.1	c	24.5	c						
Northbound M10											
South of Forest Ave Exit Ramp	Basic	21.8	-	74.8		South of Forest Ave Exit Ramp	Basic	21.3	c	34.1	D
Forest Ave Exit Ramp	Ramp	22.4	c	77.6		Forest Ave Exit Ramp	Ramp	17.6	B	30.1	D
Forest Ave Exit Ramp to Forest Ave Entr Ramp	Basic	18.2	c	81.1	F	Forest Ave Exit Ramp to 1-94 Exit Ramps	Basic	19.0	c	37.4	E
Forest Ave Entr Ramp to 1-94 S-E Exit Ramp	Weave	20.2	c	64.6	F	1.944 Exit Ramps	Ramp	16.9	в	29.4	D
$1-94$ S-W Exit Ramp	Ramp	21.5	c	59.6	F	1-94 Exit Ramps to Forest Ave Entr Ramp	Basic	14.0	в	21.8	c
$1-94$ S-W Exit Ramp to 1-944 E-N Entr Ramp	Basic	21.5	c	80.3	F	Forest Ave Entr Ramp to Milwaukee Ave Exit Ramp	Weave	12.7	B	25.2	c
1 1-94 E-N Entr Ramp to $1-94$ W-N Entr Ramp	Basic	28.1	D	96.4		Milwaukee Ave Exit Ramp to 1-94 Entr Ramps	Basic	10.5	A	43.1	E
1-94 W-N Entr Ramp to Milwaukee Ave Exit Ramp	Weave	30.3	D	42.9	E	$1-94$ Entr Ramps	Ramp	11.9	B	41.4	E
Milwaukee Ave Exit Ramp to Grand Blvd Entr Ramp	Basic	17.6	B	31.3	D	1.94 Entr Ramps to Grand Blvd Entr Ramp	Basic	15.1	B	36.0	E
North of Grand Blivd Entr Ramp	Basic	15.7	B	27.4	D	North of Grand Blvd Entr Ramp	Basic	15.2	в	35.3	E
Southbound M10											
North of Grand Blvd Exit Ramp	Basic	43.7	E	36.8	E	North of Grand Blvd Exit Ramp	Basic	46.1		51.9	
Grand Blvd Exit Ramp to Milwaukee Ave Entr Ramp	Basic	51.2	F	45.4		Grand Blvd Exit Ramp to Lane Add	Basic	48.2		51.7	
Milwaukee Ave Entr Ramp to --94 N-W Exit Ramp	Weave	41.4	E	38.7	E	Lane Add to Milwaukee Ave Entr Ramp	Basic	27.1	D	24.7	c
1-94 N-EE Exit Ramp	Ramp	57.5		37.2	E	Milwaukee Ave Entr Ramp to 1-94 Exit Ramps	Weave	23.4	c	24.0	c
1.94 N-E Exit Ramp to 1-94 Entr Ramps	Basic	45.4	F	32.5	D	1-94 Exit Ramps to Forest Ave Exit Ramp	Basic	30.5	D	29.2	D
$1-94$ Entr Ramps to Forest Ave Exit Ramp	Weave	40.1	E	30.6	${ }^{\circ}$	Forest Ave Exit Ramp	Ramp	23.0	c	22.5	c
Forest Ave Exit Ramp to Forest Ave Entr Ramp	Basic	31.2	D	25.9	c	Forest Ave Exit Ramp to $1-94$ Entr Ramps	Basic	17.2	B	20.9	c
Forest Ave Entr Ramp	Ramp	33.0	D	26.8	c	1.94 Entr Ramps	Ramp	17.8	B	16.1	B
South of Forest Ave Entr Ramp	Basic	33.1	-	26.9	D	1-94 Entr Ramps to Forest Ave Entr Ramp	Basic	22.2	c	20.4	c
						Forest Ave Entr Ramp	Ramp	21.8	c	19.7	B
						South of Forest Ave Entr Ramp	Basic	22.8	c	20.7	c
Northbound 1-75											
South of Warren Ave Exit Ramp	Basic	27.2	D	40.3	E	South of Warren Ave Exit Ramp	Basic	26.2	D	36.7	E
Warren Ave Exit Ramp to 1-94 Exit Ramps	Basic	30.3	D	36.5	E	Warren Ave Exit Ramp to 1-94 Exxit Ramps	Basic	30.1	D	34.3	D
$1-94$ Exit Ramps to Warren Ave Entr Ramp	Basic	27.4	D	37.4	E	$1-94$ Exit Ramps to Warren Ave Entr Ramp	Basic	27.4	D	32.2	D
Warren Ave Entr Ramp	Ramp	28.8	D	38.2	E	Warren Ave Entr Ramp	Ramp	28.9	D	39.1	E
Warren Ave Entr Ramp to 1-944-N Entr Ramp	Basic	28.7	D	41.5	E	Warren Ave Entr Ramp to 1-94 Entr Ramps	Basic	30.9	D	41.8	E
1-94 E-N Entr Ramp to 1.94 W-N Entr Ramp	Basic	30.1	,	38.9	E	1.944 Entr Ramps to Clay St Exit Ramp	Weave	28.4	D	37.3	E
$1-94$ W-N Entr Ramp to Clay St Exit Ramp	Ramp*	34.0	,	40.9	E	Clay St Exit Ramp to Clay St Entr Ramp	Basic	25.1	c	39.1	E
Clay St Exit Ramp to Clay St Entr Ramp	Basic	23.0	c	36.4	E	North of Clay St Entr Ramp	Basic	20.9	c	33.0	D
North of Clay St Entr Ramp	Basic	19.3	-	31.5	D						
Southbound 1-75											
North of Clay St Exit Ramp	Basic	35.2	E	72.3		North of Clay St Exit Ramp	Basic	39.7	E	64.3	
Clay St Exit Ramp to Clay St Entr Ramp	Basic	39.6	E	107.2		Clay St Exit Ramp to Clay St Entr Ramp	Basic	44.2	E	66.3	
Clay St Entr Ramp to 1-94 Exit Ramps	Weave	43.2		65.1		Clay St Entr Ramp to 1-94 Exit Ramps	Weave	42.8	E	41.5	E
1-94 Exit Ramps to Warren Ave Exit Ramp	Basic	39.1	E	14.8	B	1-944 Exit Ramps to Warren Ave Exit Ramp	Basic	30.0	D	20.2	c
Warren Ave Exit Ramp	Ramp	36.4	E	14.5	B	Warren Ave Exit Ramp	Ramp	25.8	c	17.5	B
Warren Ave Exit Ramp to 1-94 Entr Ramps	Basic	28.3	D	12.5		Warren Ave Exit Ramp to $1-94$ Entr Ramps	Basic	20.3	c	16.0	B
$1-94$ Entr Ramps to Warren Ave Entr Ramp	Basic	28.4	D	12.8	B	$1-94$ Entr Ramps to Warren Ave Entr Ramp	Basic	25.1	c	17.9	B
South of Warren Ave Entr Ramp *Overlapping ramp segment	Basic	23.2	c	11.9	B	South of Warren Ave Entr Ramp	Basic	20.5	c	16.0	B

3.3 Safety Analysis

A predictive crash analysis was conducted using the Interactive Highway Safety Design Model (IHSDM) software developed by the Federal Highway Administration (FHWA) for the 2040 nobuild and build scenarios. A No-Build scenario was considered to establish a baseline for comparison to the Build Alternative. The IHSDM utilizes methodology from the Highway Safety Manual (HSM) to predict crashes based on roadway geometry, characteristics and traffic volumes.

Overall Crashes

Table S shows the predicted crashes per year for the entire study area. The crash types are broken down into two categories: Fatal + Injury (which includes K - Fatal, A - Incapacitating Injury, B - Non-Incapacitating Injury, and C - Possible Injury) and property damage only (PDO) (which includes O - No Injury). Overall, the Build Alternative is estimated to reduce the total crashes by 16 percent per year compared to the No-Build. Injury crashes, including those that are fatal, are forecasted to reduce by eight percent per year and PDO crashes will reduce by 19 percent.

Table S: Predicted Crashes Per Year - No-Build and Build Alternative

Model	Total	Injury + Fatal	Property Damage Only
No-Build	1028.10	296.57	731.00
Build Alternative	861.96	271.75	588.72
Difference	-166.14	-24.82	$-\mathbf{- 1 4 2 . 2 8}$
Percent Change	$\mathbf{- 1 6 . 1 6 \%}$	-8.37%	-19.46%

Source: IHSDM
Note: Totals do not add up exactly per IHSDM methodology

Mainline Crashes

Table \mathbf{T} shows the predicted crashes for No-Build and Build Alternatives on freeway segments. The total crashes on the mainline of I-94 are predicted to be reduced by 16.86 percent in the Build Alternative compared to the No-Build. The M-10 mainline is expected to have over an eleven percent reduction in crashes compared to the No-Build. On I-75, the total crashes are expected to be reduced by 14.84 percent in the Build Alternative. The overall reduction in crashes is primarily due to the removal of some access ramps to the freeway and the lengthening of other ramp acceleration and deceleration lanes. Even though the French Road interchange is removed, the increase in crashes on I-94 from Gratiot to the Eastern Limit is due to three factors: higher traffic volumes, the through-lane drop in the eastbound direction to tie back into existing three through-lanes, and the relocation of the westbound Gratiot off-ramp from the Mt Elliott to Gratiot segment into this Gratiot to Eastern Limit segment. The crash increase on I-75 from I-94 to the Northern Limit is due to a reconfiguration of the ramps from I-94 to northbound I-75.

Table T: Predicted Highway Crashes Per Year - No-Build and Build Alternative

HWY	Segment	No-Build	Build	Difference	Percent Change
	Western Limit to M-10	59.93	40.35	-19.58	-32.68%
	M-10 to I-75	49.04	25.23	-23.81	-48.55%
	I-75 to Mt Elliott	65.70	51.34	-14.36	-21.85%
	Mt Elliott to Gratiot	70.54	61.88	-8.66	-12.27%
	Gratiot to Eastern Limit	51.79	68.11	16.33	31.53%
M-10	Totals:	296.99	246.91	-50.08	-16.86%
	Southern Limit to I-94	30.75	25.48	-5.27	-17.14%
	I-94 to Northern Limit	18.15	17.89	-0.26	-1.42%
I-75	Totals:	48.90	43.38	-5.53	-11.31%
	Southern Limit to I-94	32.03	18.23	-13.80	-43.07%
	I-94 to Northern Limit	33.73	37.77	4.04	11.98%

Source: IHSDM

Arterials, Ramp and Intersection Crashes

To better analyze the impact of changes under the Build Alternative, the study area was divided into eleven subareas. Figure 18 shows the limits to all eleven subareas. These subareas are made up of arterial roadways, ramps and intersections only. Overall, the total number of nonmainline crashes is reduced by over 14 percent in the Build Alternative compared to the No-Build. Fatal injury crashes are expected to reduce by seven percent. Property damage only crashes are predicted to be reduced by 17 percent, as shown in Table U. The reduction in crashes is primarily due to the removal or simplification of interchanges and ramp terminals.

Figure 18: Arterial, Ramp and Intersection Sub Areas

Source: HNTB

Although the overall crashes in the corridor is expected to be reduced, there are four subareas that are expected to have an increase in crashes of greater than one per year. These areas are at Van Dyke, Linwood, M-10 and Brush+Ferry. All these areas are expected to add traffic, which increases the propensity for crashes. Also, whenever there are additional roadway and intersections constructed, like in the case of the Brush+Ferry and Van Dyke subareas, the potential for incidents increases. Table U shows the predicted arterial, ramp and intersection crashes.

Table U: Arterial, Ramp and Intersection Crashes

	Total Crashes			Fatal Injury Crashes			Property-Damage Only Crashes		
	FNB	Build	Change	FNB	Build	Change	FNB	Build	Change
Linwood	23.89	39.79	15.90	6.82	12.16	5.34	17.06	27.64	10.58
Milwaukee	22.66	15.99	-6.67	5.54	4.07	-1.47	17.11	11.92	-5.19
Forrest	93.20	65.87	-27.33	25.28	17.26	-8.02	67.93	48.59	-19.34
M-10	7.91	16.00	8.09	3.17	6.16	2.99	4.71	9.86	5.15
Brush+Ferry	122.85	135.42	12.57	33.45	37.30	3.85	89.38	98.14	8.76
Russell	3.00	0.74	-2.26	1.57	0.26	-1.31	1.41	0.46	-0.95
I-75	28.14	28.08	-0.06	11.24	10.70	-0.54	16.88	17.38	0.50
Grand Blvd	83.10	61.75	-21.35	21.67	18.47	-3.20	61.38	43.31	-18.07
Van Dyke	24.41	28.69	4.28	6.32	7.92	1.60	18.07	20.78	2.71
Gratiot	151.51	73.70	-77.81	56.57	35.29	-21.28	94.93	38.41	-56.52
Conner	55.78	49.64	-6.14	16.37	20.81	4.44	39.43	28.81	-10.62
Total	616.45	515.67	-100.78	188.00	170.40	-17.60	428.29	345.30	-82.99

Source: IHSDM

Brush and John R. Street One-Way vs. Two Way
Previously mentioned in Sections 1.4 and 3.2, this IACR assumes that the local streets of Brush and John R. will remain one-way after construction is complete. The Build Alternative's design does not preclude the two streets from becoming two-way within the study area limits. The safety results, shown above, reflect the one-way assumption on both streets. However, additional analysis was conducted to show safety performance if John R and Brush were converted to twoway. Table V shows the predicted safety performance of the surrounding local street and ramp network between the one-way and two-way options. The two-way option is shown to have slightly more crashes, which would be expected because of the potential for head-on collisions and more crossing conflicts of left-turning vehicles. It is important to note that the predicted crashes in Table V do not reflect crashes on Brush and John R only. The crashes reflect both streets, plus the surrounding local and ramp network contained within its subarea (see Figure 18). The analysis boundaries are consistent between both options.

Table V: One-Way vs. Two-Way Brush and John R

Total Crashes			Fatal Injury Crashes			Property-Damage Only Crashes		
One-Way	Two-Way	Difference	One-Way	Two-Way	Difference	One-Way	Two-Way	Difference
135.42	138.1	2.68	37.3	37.55	0.25	98.14	100.57	2.43

3.4 Conceptual Sign Plan and Pavement Markings

A conceptual sign plan with pavement markings can be found in Appendix D. It is anticipated that the build alternative can be sufficiently signed.

3.5 Summary

Upgrading interchanges, reconfiguring ramps and improving the local streets surrounding I-94 will benefit the corridor in terms of operations and safety by the year 2040. The results of the Build Alternative's operational analysis revealed improved levels of service on the I-94 corridor compared to the No-Build Alternative. The Build Alternative is expected to reduce the total number of crashes, including fatal/injury and PDO, compared to the No-Build Alternative.

The proposed access connects to a public road only and will provide for all traffic movements. Less than "full interchanges" may be considered on a case-by-case basis for applications requiring special access, such as managed lanes (e.g., transit or high occupancy vehicle and high occupancy toll lanes) or park and ride lots. The proposed access will be designed to meet or exceed current standards (23 CFR 625.2(a), 625.4(a)(2), and 655.603(d)). In rare instances where all basic movements are not provided by the proposed design, the report should include a full-interchange option with a comparison of the operational and safety analyses to the partialinterchange option. The report should also include the mitigation proposed to compensate for the missing movements, including wayfinding signage, impacts on local intersections, mitigation of driver expectation leading to wrong-way movements on ramps, etc. The report should describe whether future provision of a full interchange is precluded by the proposed design.

4.1 Traffic Movements

All new interchange configurations that are constructed in the Build Alternative account for all traffic movements to access the interstate. The two exceptions are at Chene Street and Trumbull Avenue, where partial interchanges exists today. At Trumbull Avenue, a westbound Service Drive is being added, but otherwise the configuration remains the same as existing. At Chene Street, a westbound entrance-ramp will connect with I-94 at a different location than what currently exists, while the rest of the interchange will be reconstructed as it exists today. No westbound exit-ramp will be constructed, but one does not exist today. Chene Street is being reconstructed due to its aging condition. Adding an exit-ramp in the westbound direction would have made Chene Street a full-service interchange. However, there are several constraints that precluded MDOT from adding the additional ramp. These constraints include:

1. Limited weaving ability - If a westbound exit-ramp were to be added at Chene Street, it would create an undesirable weave movement between it and the westbound Harper Avenue entrance-ramp.
2. Minimal usage of the ramp from assembly plant workers - Coordination with the Cadillac Assembly Plant, located directly north of the interchange, revealed that most workers would not use the ramp to access the plant in favor of the Mt. Elliott Street ramp.

The solution agreed upon by MDOT and FHWA was to reconstruct Chene Street but keep the ramp geometry the same as the existing conditions. Westbound traffic on l-94 can access Chene Street via the Mt. Elliott exit-ramp located less than a mile upstream, as it does today.
4.2 Design Standards and Any Potential Design Exceptions

Traffic analysis and geometric layouts of proposed interchange concepts are based on geometric controls and criteria outlined in the documents 'A Policy on Design Standards Interstate System'
(AASHTO, May 2016), 'A Policy on Geometric Design of Highways and Streets (Green Book)' (AASHTO, 2011), and the MDOT Road Design Manual. Among several design parameters, the criteria establish basic thresholds to guide the development and evaluation of interchange concepts for this IACR. A list of design exceptions can be found in the "I-94, I-96 to Conner Detailed Engineering Report - Design Exception Summary" technical memorandum in Appendix C (page C-138). Some of the appendix documents were written prior to the newer policies (listed above) taking effect and may reference previous policy versions. The design adheres to the above listed policies, which supersedes what was written in the older appendix documents.

4.3 Special Considerations

There are specific areas of the corridor that will need enhanced design considerations due to some areas of the network transitioning from two-way to one-way, creating the potential for wrong way driving. These areas are:

- South Edsel Ford Service Drive and Trumbull Avenue
- North Edsel Ford Service Drive and Woodward Avenue
- North Edsel Ford Service Drive and Hastings Street
- Mount Elliott Street and Harper Avenue
- North Edsel Ford Service Drive and Sheridan Street
- South Edsel Ford Service Drive and Sheridan Street
- North Edsel Ford Service Drive and Iroquois Avenue
- South Edsel Ford Service Drive and Iroquois Avenue
- West John C Lodge Service Drive and W Baltimore Avenue

Design techniques that have the potential for reducing wrong way driving include, but are not limited to, barriers, raised pavement, reflective pavement markings and reflective wrong way signage. Detail on how wrong way driving will be mitigated is included in the description of each interchange in Section 1.4. Design considerations will follow MUTCD guidelines.

The traditional vertical clearance passing under structures on the interstate is 16 feet. However, a previous special route designation was granted in 2006 allowing a vertical clearance of 14'-6" within the study area limits. The vertical clearance for the Build Alternative design will be 14'-9" throughout the study area. The request and approval documents of the special route designation for vertical clearances are in Appendix C (page C-247).

Within the I-94/I-75 and I-94/M-10 interchanges, the system ramp design speed criteria for horizontal and vertical controls are 40 mph . Due to the existing constrained ROW footprint and the close proximity of the two interchanges (less than one mile), the horizontal radii for several ramps has been designed to a minimum of 485 feet, which relates to a 40 mph design speed with 6\% superelevation (MDOT Straight Line Method). The use of this minimum radius requires a horizontal sightline offset (HSO) of almost 24 feet to meet the horizontal sight distance requirements for a 40 mph design speed. This would require a shoulder width of more than 16 feet to meet this criterion. Both MDOT and AASHTO guidelines discourage using shoulder widths greater than 12 feet due to increased risk of traffic utilizing the shoulder for passing. In reviewing the SSD for the system ramps, a 12 foot inside shoulder width only increased the SSD by 30 feet to 40 feet as compared to an 8 foot inside shoulder width. This corresponds to a distance

TM 47

May 9, 2019
equivalent to approximately $11 / 2$ car lengths. The design speeds in each case were only increased by 3 mph or 4 mph . On all ramps but one, the increased design speeds still fell short of the actual ramp design speeds. In addition, a cost benefit analysis determined the cost associated with the 12 foot inside shoulder widths was approximately $\$ 10,000,000$ greater than the cost for 8 foot inside shoulder widths. In our determination/judgment, a $\$ 10$ million cost increase was not justified by such nominal sight distance and design speed improvements. Therefore, the MDOT Geometrics Unit supports an 8 foot inside shoulder width.

This, in combination with flipping the left and right side shoulder widths, allowed the use of an 8 foot left shoulder width to increase or meet SSD requirements. Using this method, the SSD was met on additional system ramps but it did not satisfy the minimum criteria for all system ramps. The locations that will require a design exception, including details regarding the design values versus policy values, are listed in the updated I-94 Modernization Project - Approved Selected Alternative with Modifications Design Exception and Variance Summary Technical Memorandum provided in Appendix C (page C-138).

5.0 Conclusion

5.1 Recommendation for Safety, Operations and Engineering Acceptability

The Build Alternative configuration contributes to better overall safety within the study area corridor and more efficient traffic operations compared to the No-Build Alternative. The Build Alternative design adheres to current state and federal design standards. The Build Alternative connects to a public road only and provides for all traffic movements.

5.2 NEPA Considerations

A supplemental environmental impact statement (SEIS) is being prepared in parallel to this document. This IACR is considered a supporting document to the SEIS. The FHWA will render decisions on the SEIS and the IACR simultaneously.

Per the updated 2017 FHWA guidance, policy points that were once addressed in the previous 2009 access to the interstate policy are now addressed in the SEIS. Appendix A outlines the section location of every policy point in the 2009 version that has now been split between the SEIS and IACR.

5.3 Next Steps

The FHWA will consider the IACR for conditional approval. Final approval of the IACR is contingent upon the approval of the SEIS.

Appendix A - Policy Points Section Reference within the SEIS and IACR Documents
Appendix B - Traffic and Safety Supporting Data
Appendix C - Previous Studies and Technical Memorandums
Appendix D - Build Alternative Design and Conceptual Signing Plan

I-94 Modernization Project I-96 to Conner Avenue City of Detroit Control Section 82024 Job \# 122114

Interchange Access Change Request - APPENDICES

Prepared by:
Michigan Department of Transportation
May 2019

APPENDICES TABLE OF CONTENTS

Appendix A A-1
FHWA Policy Points Index A-1
Appendix B B-1
I-94 Existing, No-Build and Build Model Validation B-1
2040 Peak Hour Volumes B-13
Existing 2014 Peak Hour Volumes B-21
Existing 2014 ADT B-37
TM 3: I-94 Traffic Volume Forecasting B-45
Appendix C C-1
AJR 2004 C-1
Speed Validation Response to FHWA (Addendum) C-117
Speed Validation Response to FHWA C-119
M-10 to Brush Street Weave Microsim Analysis C-123
Design Exception and Variance Summary C-138
Trumbull Avenue (S21 of 82023) over I-94 Lane Configuration Verification C-149
MDOT Speed Data Review C-185
Roadway Design Criteria C-189
TM 3: I-94 Traffic Volume Forecasting C-197
TM 8: Existing (2014) Paramics Assessment and Model Calibration for I-94 C-201
Request for Approval of Additional Special Route Designations C-247
Request for Approval of Additional Special Route Designations - Approval C-293
Appendix D D-1
I-94 Conceptual Signing Plan. D-1
Proposed Typical Section D-2

APPENDIX A

Appendix A: Reference Guide for the Policy Points in Previous Version of Access to the Interstate

In 2017, the Federal Highway Administration (FHWA) issued an updated policy regarding requests for additional or revised access to the Eisenhower Interstate Highway System. The policy includes guidance for the justification and documentation needed for such requests. The policy's intent is to ensure that the Interstate System provides the highest levels of safety and mobility to the traveling public. Adequate control of access is critical to providing this service. This policy was originally issued in the Federal Register on October 22, 1990 and was revised as published in the Federal Register on February 11, 1998, and August 29, 2009. The most recent revision was approved on May 22, 2017. This revision reduced the number of policy points from eight to two. The list below identifies the sections in which the eight policy points, previously included in the "Access to the Interstate" 2009 version, are located within the SEIS or IACR. The numbered list below is outlined the same way as the previous 2009 version.

1. The need being addressed by the request cannot be adequately satisfied by existing interchanges to the Interstate, and/or local roads and streets in the corridor can neither provide the desired access, nor can they be reasonably improved (such as access control along surface streets, improving traffic control, modifying ramp terminals and intersections, adding turn bays or lengthening storage) to satisfactorily accommodate the design-year traffic demands (23 CFR 625.2(a)).

See Sections 2.3 (Existing Peak Period Traffic Operations) and 2.4 (Future No-Build Peak Period Traffic Operations) of the IACR. In SEIS, see Chapter 1 (Purpose and Need) Section 1.4.3 (Traffic) 1.4.4 (Safety), 1.4.5 (Multi-modal Transportation) and 1.4.7 (Connectivity and Mobility).
2. The need being addressed by the request cannot be adequately satisfied by reasonable transportation system management (such as ramp metering, mass transit, and HOV facilities), geometric design, and alternative improvements to the Interstate without the proposed change(s) in access (23 CFR 625.2(a)).

See Section 3.2 (Peak Period Traffic Operations Analysis), 3.3 (Safety Analysis) and Appendix D (Conceptual Signing Plan) of the IACR.
3. An operational and safety analysis has concluded that the proposed change in access does not have a significant adverse impact on the safety and operation of the Interstate facility (which includes mainline lanes, existing, new, or modified ramps, and ramp intersections with crossroad) or on the local street network based on both the current and the planned future traffic projections. The analysis should, particularly in urbanized areas, include at least the first adjacent existing or proposed interchange on either side of the proposed change in access (Title 23, Code of Federal Regulations (CFR), paragraphs 625.2(a), 655.603(d) and 771.111(f)). The crossroads and the local street network, to at least the first major intersection on either side of the proposed change in access, should be included in this analysis to the extent necessary to fully evaluate the safety
and operational impacts that the proposed change in access and other transportation improvements may have on the local street network (23 CFR 625.2(a) and 655.603(d)). Requests for a proposed change in access should include a description and assessment of the impacts and ability of the proposed changes to safely and efficiently collect, distribute, and accommodate traffic on the Interstate facility, ramps, intersection of ramps with crossroad, and local street network (23 CFR 625.2(a) and 655.603(d)). Each request should also include a conceptual plan of the type and location of the signs proposed to support each design alternative (23 U.S.C. 109(d) and 23 CFR 655.603(d)).

See Section 3.2 (Peak Period Traffic Operations Analysis), 3.3 (Safety Analysis) and Appendix D (Conceptual Signing Plan) of the IACR.

4. The proposed access connects to a public road only and will provide for all traffic movements. Less than "full interchanges" may be considered on a case-by-case basis for applications requiring special access for managed lanes (e.g., transit, HOVs, HOT lanes) or park and ride lots. The proposed access will be designed to meet or exceed current standards (23 CFR 625.2(a), 625.4(a)(2), and 655.603(d)). In rare instances where all basic movements are not provided by the proposed design, the report should include a full-interchange option with a comparison of the operational and safety analyses to the partial-interchange option. The report should also include the mitigation proposed to compensate for the missing movements, including wayfinding signage, impacts on local intersections, mitigation of driver expectation leading to wrong-way movements on ramps, etc. The report should describe whether future provision of a full interchange is precluded by the proposed design.

See Section 4.1 (Traffic Movements) of the IACR. Also, see Section 3.1.4 (Description of the ASAM) in the SEIS.
5. The proposal considers and is consistent with local and regional land use and transportation plans. Prior to receiving final approval, all requests for new or revised access must be included in an adopted Metropolitan Transportation Plan, in the adopted Statewide or Metropolitan Transportation Improvement Program (STIP or TIP), and the Congestion Management Process within transportation management areas, as appropriate, and as specified in 23 CFR part 450, and the transportation conformity requirements of 40 CFR parts 51 and 93.

See Section 4.1.2 (Regional and Statewide Transportation Planning) and Section 4.6 (Land Use) in the SEIS

6. In corridors where the potential exists for future multiple interchange additions, a comprehensive corridor or network study must accompany all requests for new or revised access with recommendations that address all of the proposed and desired access changes within the context of a longer-range system or network plan (23 U.S.C. 109(d), 23 CFR 625.2(a), 655.603(d), and 771.111).

There are no plans for future multiple interchange additions.

7. When a new or revised access point is due to a new, expanded, or substantial change in current or planned future development or land use, requests must demonstrate appropriate coordination has occurred between the development and any proposed transportation system improvements (23 CFR 625.2(a) and 655.603(d)). The request must describe the commitments agreed upon to assure adequate collection and dispersion of the traffic resulting from the development with the adjoining local street network and Interstate access point (23 CFR 625.2(a) and 655.603(d)).

There is no new, expanded, or substantial change in current or future development or land use.
8. The proposal can be expected to be included as an alternative in the required environmental evaluation, review and processing. The proposal should include supporting information and current status of the environmental processing (23 CFR 771.111).

See Chapter 3 (Alternatives) of the SEIS. The SEIS and IACR are being completed concurrent to one-another.

APPENDIX B

AM Period - Build Validation

AM Period - Build Validation

PM Period - Build Validation

PM Period - Build Validation

AM Period - Existing Validation

AM Period - Existing Validation

PM Period - Existing Validation

PM Period - Existing Validation

AM Period - No Build Validation

AM Period - No Build Validation

PM Period - No Build Validation

PM Period - No Build Validation

(5380) -P.M. TRAFFIC VOLUME

WB I-94 SERVICE DRIVE
WB I-94
SERVICE DRIVE
WB
B 1-94 5

$$
\frac{7220}{(4610)}
$$

EB I-94 SERVI
DRIVE

CS: 82024
$\mathrm{JN}: 122114$

[^1]I-94 Modernization Project DSEIS Appendix J: Interstate Access Change Request

\square
-

	DATE: $12 / 15 / 15$	CS: 82024	
		$\mathrm{NN}: 122114$	

HARPER
站

WB I-94 SERVICE DRIVE

WB I-94 (5)

4
EB 1-94 (5)

B I-94 SERVICE DRIVE

\square

$\mathrm{CS}: 82024$
$\mathrm{JN:}: 122114$

(S) signalized intersection
(5) \# of lanes
(+1) ADDED/DROPPED
$\frac{123}{(456)}$ A.M. TRAFFIC VOLUME

WB I-

EB I-94 $3{ }^{\frac{4520}{(4320)}}$

NOTE: INTERSECTION UNDER CONSTRUCTION FOR M-1 RAIL PROJECT

WB 1-
WB 1-94 (3)

E GRAND BLVD

(3) $\frac{6530}{(4550)}$

EB 1-94 (3)

LECEND
(S) signalizeo intersection
(5) : OF Lanes

E GRAND BLVD
LUCKY
(1) OF LANES

123 - A.M. TRAFFIC VOLUME
(456) JP.M. TRAFFIC VOLUME
PAATE: 03/13/15

EB I-94 (3) $\frac{3700}{(5150)}$

EB
$\stackrel{20}{2}+$
$\frac{10}{(10)}$
$\frac{10}{(10)}$
$\frac{10}{(10)}$

$\frac{3370}{(4910)}$

(S) Signalized intersection
(5) \# of lanes
(1) OF LANES

123 -A.M. TRAFFIC VOLUME
(456) FP.M. TRAFFIC VOLUME

I-94 Modernization Project DSEIS Appendix J: Interstate Access Change Request

WB I-94

EB I-94

(S) Signalized intersection
(5) \# OF LaNES
(+1) OF LANES
8.0%] A.M. TRUCK PERCENT
\square

E GRAND BLVD
LUCKY
LEGEND
(S) simalized intersection
(5): OF LANES
(+1) OF LANES $\begin{gathered}\text { ADDED/DROPPED }\end{gathered}$
$\frac{8.0 \% \text { J-A.M. TRUCK PERCENT }}{(8.0 \%)-P . M .}$
\square
DATE: 03/13/15
CS: 82024
$\mathrm{JN}: 122114$

WB I-94

LEGEND

(S)	signalized intersection
	\% OF Lanes
	- of Lanes adDed/DRopped
$\frac{8.0 \%}{18.0 \%}$	子 A.M. TRUCK PERCENT \%)-P.M. TRUCK PERCENT

LEGEND
(S) Signalized intersection
(5) of Lanes
+1) of LANES
123 FADED TRAFFIC volume

	DATE: $03 / 06 / 15$	CS: 82024	
		$\mathrm{JN:} 122114$	

WB I-94

LEGEND
(S) signalized intersection
(5) \# OF Lanes
(+1) O LIANES
123 - ADT TRAFFIC VOLUME

WB I-94

EB I-94

WB I-94

EB I-94

LEGEND
(S) Signalized intersection
(5) \# of Lanes

ST. AUBIN

123] ADT TRAFFIC VoLume
\square

WB I-94

EB I-94

E GRAND BLVD
LUCKY
LEGEND
(S) Signalized intersection
(5): OF LANES
+1) OF LANES
123] ADT TRAFFIC VOLUME

Final row Plan revisions ISUUMITTAL Date:										HNTB	Tendicher	NO SCALE		CS: 82024	2014 ADT Traffic Volumes	draming	SHEET
No.	date	AuT		DESCRPTITION	No		date	Аитн	DESCRIPTIION						1-94 From East Grand to M+ Elliot		
														J! 122114	City of Detroit, Wayne County		

B I-94

I-94

LEGEND
(S) Signalized intersection
(5) OF Lanes
+1) $\begin{gathered}\text { OF LANES } \\ \text { ADDED/DROPPE }\end{gathered}$
123 - ADT TRAFFIC VOLume
\square

I-94 Traffic Volume Forecasting

NO. MDOT - TM 3

May 6, 2015
MDOT JN: 122114
Control Section: 82024
Author: Mark Smith, PE, PTOE
Reviewers: Karianne Steffen, PE, PTOE
Matt Simon, PE

Background:

As part of the I-94 Modernization Project Owners Representative Work Task \#1, Subtask 2.2 Traffic, this technical memorandum is intended to document the assessment of SEMCOG's 2010 and 2040 Travel Demand Models (TDM) and the discussions with MDOT and SEMCOG on March 6, 2015, March 13, 2015, and May 1, 2015 regarding traffic volume forecasting along the I-94 study corridor.

Existing Project Data:

The limits of the I-94 Modernization Project are located in the City of Detroit between I-96 and Conner Ave, which is approximately seven miles in length, as shown in Figure 1 below. I-94 is currently stripped as a six (6) lane urban freeway that carries three (3) lanes of westbound traffic and three (3) lanes of eastbound traffic. Within these seven miles of urban freeway there are over 50 ramp entrances/exits along the I-94 corridor. Existing traffic conditions indicate that demand for the I-94 corridor has exceeded the available capacity limits given the heavy congestion experienced during the AM and PM peak periods. The recurrent congestion on the $\mathrm{I}-94$ corridor has resulted in a diversion of trips from the I-94 corridor to adjacent facilities. It is expected that once additional capacity is added with the l-94 Modernization Project a large volume of traffic will shift back to the l-94 corridor that had previously diverted due to the heavy congestion.

Figure 1: I-94 Modernization Project Limits

Assessment of SEMCOG Travel Demand Models:

Traffic assignments were obtained from SEMCOG's 2010 and 2040 Travel Demand Models (TDM) to evaluate traffic volume growth along the I-94 study corridor. For background traffic growth the TDM projected a growth rate of 0.07\% per year (compounded annually) from 2010 to 2040, prior to the construction of the I-94 Modernization Project. The TDM also projected a growth rate of 0.16% per year (compounded annually) from 2010 to 2040, which is expected after the completion of the I-94 Modernization Project. The traffic projections account for growth due to long term traffic pattern changes plus the socio-economic growth in the I-94 impact area. The l-94 corridor will also see an increase in traffic due to diverted demand that is currently using adjacent facilities. The SECMOG TDM model estimates that I-94 mainline traffic volumes are projected to increase by 23% to 27% depending on when I-94 modernization project is completed (i.e. if project was completed in 2010 traffic shift would have been 23%, if project is completed in 2040 traffic shift is expected to be 27%). Table 1 below summarizes the projected traffic increases for the I-94 corridor. The total traffic increase is based on the average of the annual growth rate and the traffic shift due to the diverted demand since the final completion date of the I-94 Modernization Project is unknown.

Table 1: I-94 Projected Traffic Volume Increases

	Annual Growth Rate $(2010-2040)$	Traffic Shift due to Diverted Demand	Total Traffic Increase $(2010-2040)$
I-94 Modernization Project	$0.07 \%-0.16 \%$ Per Year	23% to 27%	29%

The projected traffic volume increases from SEMCOG's TDM were developed in 2010, during a time of recession. Recent economic changes in Detroit's Midtown area and surrounding communities are not reflected in these projections.

Based on the review of SEMCOG's TDM, the corridor analysis provides the expected traffic growth along the l-94 study corridor. The growth determined from the corridor analysis is limited to the mainline freeway lanes as the level of detail within the TDM does not provide accurate traffic volume projections for surface streets and ramps. Given the limitations of the SEMCOG TDM, separate forecasting methodologies will be used for the I-94 freeway and surface streets / ramps.

Traffic Volume Forecasting Methodology:

I-94 Freeway Traffic Volume Forecasting Methodology

1. Growth rates from SEMCOG's Corridor Analysis (shown in Table 1) will be used to forecast 2040 build I-94 mainline traffic volumes.

I-94 Service Drive and Ramp Traffic Volume Forecasting Methodology

Given the limitations of the TDM to accurately project traffic volumes for the surface streets and ramps, several methods were analyzed for forecasting traffic on the I-94 Service Drives and I-94 Ramps which included:

- Comparing 2010 and 2040 SEMCOG TDM's to evaluate growth based on population, socioeconomic data, and vehicle miles travel within the I-94 study area.
- Reviewing existing traffic volumes within the I-94 study area where continuous service drives exist to estimate volumes for proposed continuous service drives.

May 6, 2015

- Reviewing existing traffic travel patterns within the I-94 study area to estimate directional distribution percent's for future.
- Reviewing the recently constructed I-96 project in Livonia.
- Minimum safety standards for a service drive would require two lanes for emergency access.
- Best traffic planning and engineering practices

It was suggested that a subarea micro-simulation model could be used. While a subarea microsimulation model would be the best way to forecast traffic volumes for the surface streets and ramps it would also require an extensive amount of data that is not available. A subarea microsimulation model would require the collection of additional traffic volumes for all significant alternate routes in the Detroit area surrounding the I-94 corridor. The limits of a subarea model could extend as far as the borders of the map shown previously in Figure 1. In addition to the data collection there would also be a large effort to calibrate the model before it could be used.

With the inherent schedule delays that a subarea micro-simulation model would create it was agreed on May 1, 2015 with MDOT and SEMCOG that triangulating the methods analyzed above would be an acceptable approach to forecast traffic for the I-94 Service Drives and I-94 Ramps in place of a subarea micro-simulation model.

Therefore, based on discussions with MDOT and SEMCOG on May 1, 2015 the proposed methodology for forecasting traffic for the I-94 Service Drives and I-94 Ramps is outlined below. Both MDOT and SEMCOG were in agreement on this approach:

1. A total of 1,000 thru vehicles per hour (VPH) will be applied to the l-94 Service Drives during the AM and PM peak hours. The 1,000 thru vehicles is based on existing peak hour traffic volumes counted at the Chene St and Mt. Elliott St intersections with the I-94 eastbound and westbound service drives. Chene St and Mt. Elliott St were used to develop the thru VPH based on the existing continuous service drives at these locations.
2. Projected directional distributions were developed, as shown in Table 2, based on an evaluation of existing traffic volumes and anticipated travel pattern impacts from the proposed continuous service drives. The directional distributions will be applied to the 1,000 thru VPH to assign peak hour thru volumes on the eastbound and westbound I-94 Service Drives.

Table 2: I-94 Service Drive Projected Directional Distributions

Location	Direction Distribution	
	AM Peak Hour	PM Peak Hour
West of M-10		
WB I-94 Service Drive	40%	60%
EB I-94 Service Drive	60%	40%
Between M-10 and M-1 (Woodward Ave)		
WB I-94 Service Drive	45%	55%
EB I-94 Service Drive	55%	45%
East of M-1 (Woodward Ave)		
WB I-94 Service Drive	60%	40%
EB I-94 Service Drive	40%	60%

Page 3 of 4
3. To develop peak hour turning movement volumes at the study area intersections, 10% of the service drive thru traffic volume will be used. The peak hour turning movement percentage was developed based on review of existing turning movement counts at low volume intersections on the I-94 corridor and the Trumbull Ave Bridge evaluation. Additionally, the I-96 reconstruction project (Newburg Rd to Melvin St) in Livonia was reviewed to confirm the proposed methodology for the I-94 corridor. A review of the I-96 project found that when distributing turning volumes to adjacent signals it was assumed that 10% turned left and 10% turned right which matches the proposed methodology for the I-94 corridor. This methodology will only be used if the existing turning movements are lower than 10% of the service drive thru volume otherwise the existing volume will be used. Two examples of the I-94 Eastbound Service Drive, east of M-1 (Woodward Ave), are shown in Figure 2.

Figure 2 - Example of Turning Movement Volume Development

In addition to the forecasting methods described above, a minimum annual growth rate of 0.16% per year (compounded annually) will be used to forecast I-94 Service Drives, local roads, and I94 Ramps for the AM and PM peak periods. The minimum annual growth rate of 0.16\% matches the highest annual growth that is anticipated for the l-94 Freeway. All adjustments will be made to the existing (2014) traffic volumes to account for the proposed roadway modifications before applying the 0.16% annual growth rate to develop projected 2040 build traffic volumes.

APPENDIX C

I-94 Rehabilitation Project Detroit, Michigan

ACCESS JUSTIFICATION REPORT DRAFT 3

Prepared for:
Michigan Department of Transportation State Transportation Building 425 West Ottawa Street Lansing, Michigan 48909

Prepared by:
Parsons Brinckerhoff Michigan, Inc. 535 Griswold Street, Suite 1525

Detroit, Michigan 48226

October 2004

MDOT/FHWA COMMENTS NOT ADDRESSED IN ACCESS JUSTIFICATION REPORT VOLUME 1, DRAFT 3

1.2 Eight Federal Policy Requirements

A comment was made requesting information about the crash rate. A crash rate analysis was not conducted as directed by MDOT, only a crash frequency analysis was performed. Therefore, information on crash rate was not added to this section.

2.1.1.3 I-94 Mainline

Westbound I-96 entrance ramp and eastbound I-96 entrance ramp was circled with no comment. We will need additional clarification on the comment.

2.2 Issues of Concern of Controversy

The words "Build Alternative" were underlined several times on Page 23, more clarification on this comment will be needed in order to address it in the report.

5.7.3 Observations Regarding Adjacent Freeway Segments

A comment was made to add the statement that "With a few exceptions these segments will operate under capacity. The four segments that operate over capacity will have a volume to capacity ratio less than 1.0.". Segments surrounding the study area are operating at or near capacity, with no segments operating under capacity throughout the entire day. Some of the segments are operating under capacity during part of the day, but not the entire day. Some of the segments have a volume to capacity ratio less than 1.0, but not all four surrounding the study area.

MDOT/FHWA COMMENTS NOT ADDRESSED IN ACCESS JUSTIFICATION REPORT VOLUME 2, DRAFT 3

Figure 4D (new Figure 4E)

A comment was made that the lane drop configuration "isn't good" along the southeast side near Russell Street because of the high traffic volume in the PM peak hour. The HCS calculation indicates a LOS A in the AM peak hour and a LOS B in the PM peak hour at the intersection Russell and the eastbound I-94 service drive. The eastbound service drive would have a free-flow movement and not have to yield to the northbound I-75 service drive ramp. These two combined indicate that there would not be congestion along the service drive in this area.

Figure 4N (new Figure 4P)

A comment was made asking why the southbound Service Drive goes to two lanes for a short distance through the interchange. This is due to the southbound I-75 off-ramp that
merges with the southbound I-75 Service Drive. When the off-ramp comes together with the Service Drive, the Service Drive was made two lanes for a short distance to accommodate the merging maneuvers from the off-ramp.

Figure 15A

A comment was made asking how the Service Drives start and whether the figure was missing detail. The Service Drives west of I-96 are accurately depicted in Figure 15A. The EB I-94 Service Drive starts in Figure 15B where it is shown that the NB I-96 Service Drive makes approximately a 90-degree bend and becomes the EB I-94 Service Drive just west of Grand River Avenue.

Figure 15B

A comment was also made asking why the Service Drive was not connected to the existing Service Drive west of I-96. The intent of this project was to address congestion east of I-96 to Conner Avenue. The whole I-96 interchange would have to be redesigned to connect the service drives to the west side of the interchange.

Table 10A - Page 203

A comment was made asking why the LOS and Volume to Capacity Ratio (V/C) gets worse with the Build Alternative. The future forecasts indicated that more traffic would be drawn to I-94 based on improvements to the I-94 project corridor. This additional traffic is due to more vehicles staying on the freeway with the Build Alternative compared to the No-Build Alternative, where more vehicles exited the freeway and used surface roads. The study limits for the LOS and V/C analysis extended on both ends past the portion of I-94 where improvements where made. Therefore, these end portions where no improvements were made are attracting more traffic as well because of the improvements made to I-94 in the project area. Since no improvements/geometric changes were made to these end portions and traffic volumes increased when compared to the No-Build Alternative, the LOS and V/C degraded along these end portions for the Build Alternative. See Section 5.7.2 for more description.

I-94 Rehabilitation Project Detroit, Michigan

DRAFT ACCESS JUSTIFICATION REPORT
 Volume 1: Report and Analyses

Prepared for:
Michigan Department of Transportation
State Transportation Building 425 West Ottawa Street Lansing, Michigan 48909
Prepared by:
Parsons Brinckerhoff Michigan, Inc. 535 Griswold Street, Suite 1525
Detroit, Michigan 48226

October 2004

TABLE OF CONTENTS

Volume 1: Report and Analysis

1.0 EXECUTIVE SUMMARY 1
1.1 INTRODUCTION 1
1.2 Eight Federal Policy Requirements 3
1.3 Design Exceptions 7
1.4 Recommendations 8
2.0 INTRODUCTION 9
2.1 Proposed New or Modified Access 9
2.1.1 General Design of the Build Alternative 10
2.1.1.1 Typical Section 10
2.1.1.2 Continuous Service Drives and Surface Street Intersections 10
2.1.1.3 I-94 Mainline 11
2.1.1.4 $\quad \mathrm{M}$-10 Mainline 12
2.1.1.5 I-75 Mainline 14
2.1.1.6 Relocated and Removed Access Points 14
2.1.1.7 Additional Ramps 15
2.1.2 Existing and Proposed Access Changes 15
2.1.2.1 I-94 / Fourteenth Street Interchange 16
2.1.2.2 l-94 / M-10 Interchange 17
2.1.2.3 I-94 / John R Avenue Interchange 17
2.1.2.4 I-94 / Beaubien Street Interchange 18
2.1.2.5 I-94 / I-75 Interchange 19
2.1.2.6 I-94 / Chene Street Interchange 19
2.1.2.7 I-94 / Mt. Elliott Avenue Interchange 20
2.1.2.8 I-94 / Gratiot Avenue Interchange 20
2.1.2.9 I-94 / French Road Interchange 20
2.1.2.10 I-94 / Conner Avenue Interchange 21
2.1.2.11 Southbound I-75 / Warren Avenue exit ramp 22
2.2 ISSUES OF CONCERN OR CONTROVERSY 22
2.3 COST 23
2.4 DIstance to AdJacent Interchanges 23
3.0 REGIONAL TRAFFIC NEED 25
3.1 Purpose of the Proposed Action 25
3.2 PROJECT BACKGROUND 25
3.3 Description of the Project Limits. 27
3.3.1 Validation of Project Limits 28
3.3.1.1 Logical Termini 28
3.3.1.2 Independent Utility 29
3.3.1.3 Other Improvements 29
3.3.2 Conclusion on the Validation of Project Limits 29
3.4 Description of the Project 30
3.5 Need for the Proposed Action 31
3.5.1 Sufficiency Rating 31
3.5.2 Bridge Conditions 32
3.5.3 Traffic Congestion 32
3.5.4 Local Traffic 33
3.5.5 Safety 34
3.5.6 Transit, Pedestrians, and Bicyclists 35
3.5.7 Economic Setting 36
3.5.8 I-94 System Connectivity and Continuity 36
3.6 Project Goals and Objectives 37
4.0 REASONABLE ALTERNATIVES 38
4.1 Alternatives Eliminated from Further Consideration 38
4.1.1 Use of Grand Trunk Western/Conrail Rail Corridor as a Truck Route 38
4.1.2 Reconstruct I-94: Add HOV Lanes without Improvements to the M-10 and I-75 Interchanges 39
4.1.3 Reconstruct I-94: Add Unconventional Service Drives without Improvements to the M-10 and I-75 Interchanges. 40
4.1.4 Reconstruct I-94: Add Lanes and Provide Reserved Space for Future Expansion without Improvements to the $M-10$ and I-75 Interchanges 41
4.1.5 Reconstruct I-94: Improvements to the M-10 and I-75 Interchanges with Collector-Distributor Roads 41
4.1.6 Reconstruct I-94: Original Design of Improvements to the $M-10$ and I-75 Interchanges with Continuous Service Drives 41
4.1.7 Refinement of Design of Improvements to the M-10 and I-75 Interchanges with Continuous Service Drives. 42
4.1.8 Reconstruct I-94: Original Design of Improvements to the $M-10$ and I-75 Interchanges with Braided Ramps 42
4.1.9 Refined Original Design of Improvements to the M-10 and I-75 Interchanges with Braided Ramps 43
4.1.10 Modifications to Existing Transit Service in the I-94 Corridor 43
4.1.11 No-Build Alternative 43
4.1.12 Enhanced No-Build Alternative 43
4.1.13 DEIS Build Alternative 44
4.1.14 DEIS Build Alternative: Modification Two. 44
4.1.15 DEIS Build Alternative: Modification Three 45
4.1.16 Light Rail in the I-94 Median 45
4.2 Transportation Measures Compatible with the Build Alternative 46
4.2.1 Transportation Systems Management (TSM) 46
4.2.2 Transit 47
4.2.2.1 Existing Transit Service 47
4.2.2.2 Bus Rapid Transit (BRT) 48
4.2.2.3 Regional Transit Initiatives 48
5.0 TRAFFIC OPERATIONS ANALYSIS 50
5.1 Design Year Traffic Projections 50
5.2 TRaffic Analysis Methodology 50
5.3 Peak Hour Freeway Volumes. 51
5.3.1 Existing Conditions Freeway Volumes. 51
5.3.2 No-Build Alternative Freeway Volumes 51
5.3.3 Build Alternative Freeway Volumes 51
5.4 Peak Hour Freeway Level of Service 53
5.4.1 Existing Conditions Freeway Level of Service 54
5.4.2 No-Build Alternative Freeway Level of Service. 55
5.4.3 Build Alternative Freeway Level of Service 56
5.5 Peak Hour Surface Street Volumes 58
5.6 Peak Hour Surface Street Level of Service 59
5.6.1 Existing Conditions Surface Street Level of Service. 60
5.6.2 No-Build Alternative Surface Street Level of Service 60
5.6.3 Build Alternative Surface Street Level of Service 62
5.7 Freeway Segment Results Adjacent to Project Limits for the Year 2025 63
5.7.1 No-Build Alternative 63
5.7.2 Build Alternative 64
5.7.3 Observations Regarding Adjacent Freeway Segments 64
5.8 Additional Proposed Traffic Signalization and Signing 65
6.0 ACCESS CONNECTIONS AND DESIGN 66
6.1 DEsIGN CRITERIA 66
6.2 DEsign Exceptions and Justifications 68
6.2.1 Design Exception: Freeway Mainline Inside Shoulder Width / Horizontal Clearance 69
6.2.1.1 I-94 Dequindre Bridge 69
6.2.2 Design Exception: Horizontal Sight Distance (Ramps) 71
6.2.3 Design Justification: Ramp Terminal Spacing 71
6.2.3.1 Eastbound I-94: M-10 Entrance Ramps, Brush Street Exit Ramp, and I-75 Exit Ramp 72
6.2.3.2 Eastbound I-94: Northbound and Southbound I-75 Entrance Ramp and Chene Street Exit Ramp 73
6.2.3.3 Westbound I-94: Brush Street Entrance Ramp and Northbound and Southbound M-10 Exit Ramp 74
6.2.3.4 Westbound I-94: Chene Street Entrance Ramp to I-75 Exit Ramp 75
6.2.3.5 Northbound I-75: Eastbound I-94 Entrance Ramp and Clay Street Exit Ramp 76
6.2.3.6 Southbound I-75: Clay Street Entrance Ramp and Eastbound and Westbound I-94 Exit Ramps 77
7.0 TRANSPORTATION PLANS, LAND USE PLANS, AND THE NEPA PROCESS 79
7.1 TRANSPORTATION AND LAND USE PLANS 79
7.2 NEPA ENVIRONMENTAL PROCESS 79
8.0 COORDINATION 80
8.1 Project Meetings 80
8.1.1 Local and Public Meetings 80
8.1.2 Agency Meetings 82
8.2 LETTERS OF SUPPORT 82
8.3 Private, State, and Local Commitments of Non-Interchange IMPROVEMENTS 83
8.4 Other Projects 83
Appendix A—Letters of Support
Volume 2: Tables and Figures

1.0 EXECUTIVE SUMMARY

This report, Access Justification Report, Volume 1: Report and Analyses, provides the support and justification for modifying existing interchanges along Interstate 94 (I-94) from east of the I-96 interchange to east of Conner Avenue. This report also includes the purpose and need for these modifications and the supporting traffic analysis. Access Justification Report, Volume 2: Tables and Figures contains the tables and figures that accompany this report.

1.1 INTRODUCTION

This section briefly summarizes the purpose of the proposed project and cites the reasons that the project is needed. Both the purpose and the need are explained in detail in Chapter 3.0, Regional Traffic Need.

The purpose of the Interstate 94 (I-94) Rehabilitation Project (from east of I-96 to east of Conner Avenue) is to improve the capacity and condition of the existing I-94 roadway and interchanges to support the mobility needs of local and interstate commerce and national and civil defense. The project would also result in enhanced local traffic circulation by separating local traffic from I-94 traffic via continuous service drives. The project area is shown below, and illustrated in Figure 1 (see Volume 2).
 identified the project segment of I-94 as the freeway in greatest need of improvement. The corridor is aged and requires frequent maintenance. In addition, various segments and interchanges within the project area are outdated in their design. The current design and high traffic volumes contribute to inadequate capacity, especially during the morning and evening rush hours. The Annual Average Daily Traffic (AADT) in the project area ranges from 120,000 to more than 160,000 vehicles and is expected to grow by more than 35 percent by the year 2025 (approximately 216,000). Truck traffic has been growing steadily on I-94 at a rate of five to seven percent each year. Current truck traffic ranges from five to ten percent of the total traffic within the project limits. Due to I-94's link to international border crossings and the growing economy in southeast Michigan, the volume of heavy truck
traffic on southeast Michigan interstates is expected to grow three times faster than the passenger vehicle volume.

I-94 needs major improvements in order to:

- Replace aging pavement and bridges;
- Address congestion and provide for future travel demand;
- Connect important routes in an effective and efficient manner;
- Improve safety;
- Improve local circulation by separating local and through traffic;
- Improve freight mobility;
- Provide improved facilities for pedestrians and bicyclists; and
- Improve the aesthetics of the project area and provide a positive image to visitors.

The Build Alternative for the Final Environmental Impact Statement (also known as the Recommended Alternative) would include an additional lane in each direction along l-94 and provide continuous service drives through the I-94 interchanges with M-10 (the John C. Lodge Freeway) and I-75 (the Chrysler Freeway). Specifically, this alternative would consist of:

- The addition of one general-purpose lane in each direction of I-94 within the project area (between east of I-96 to the Conner Avenue interchange);
- The redesign and reconstruction of the critical freeway-tofreeway interchanges within the project limits (I-94/M-10 and I-94/I-75), eliminating all left-hand exits and

Build Alternative Typical Cross-Section entrances;

- The redesign and reconstruction of all bridges and ramps within the project area, including the addition of auxiliary, acceleration, and deceleration lanes;
- The provision of a 14 -foot inside shoulder and a 12 -foot outside shoulder on I-94;
- The provision of one-way continuous service drives with two 11-foot travel lanes, an 8 -foot shoulder, and adjacent sidewalks parallel to both sides of the I-94 mainline freeway within the project area outside of the freeway-to-freeway interchanges (Based on projected traffic volumes, a three-lane section of the eastbound service drive would be provided along I-94 between M-10 and I-75);
- The provision of a one-lane service drive on both sides of the I-94 mainline freeway through the freeway-to-freeway interchanges; and
- The provision of one-way continuous service drives with two 11-foot travel lanes, an 8 -foot shoulder, and adjacent sidewalks located along M -10 from Pallister/Seward Avenues to Forest Avenue and along l-75 from Warren Avenue
to Clay Avenue with one-lane service drives provided through the freeway-tofreeway interchanges.

The proposed typical section is shown on the previous page, and illustrated in Figure 2 (see Volume 2).

1.2 EIGHT FEDERAL POLICY REQUIREMENTS

The Federal Highway Administration (FHWA) issued a policy that stipulates criteria for justifying new or modified access points to the existing Interstate System. The following information regarding the policy and requirements was taken verbatim from the FHWA Federal-Aid Policy Guide: Transmittal 23 (June 17, 1998) and is presented in bold text.

The policy for additional access to the interstate system (23 CFR 630) is as follows:
It is in the national interest to maintain the Interstate System to provide the highest level of service in terms of safety and mobility. Adequate control of access is critical to providing such service. Therefore, new or revised access points to the existing Interstate System should meet the following requirements:
(1) The existing interchanges and/or local roads and streets in the corridor can neither provide the necessary access nor be improved to satisfactorily accommodate the design-year traffic demands while at the same time providing the access intended by the proposal.

Within the project area, l-94 is currently capacity-deficient. As traffic volumes increase in the future, the level of service would further deteriorate. Without improvements, nearly all segments of I-94 are expected to perform at Level of Service (LOS) F during peak periods by the design year, meaning motorists would be subject to congested, stop-andgo conditions throughout the corridor (see Chapter 5.0). The addition of lane capacity and reduction of weaving maneuvers would be required to accommodate design year traffic demand.

Currently, the existing service drives along I-94, I-75, or M-10 are not continuous. While service drives do exist along parts of I-94, I-75 and M-10 within the study area, these service drives terminate at the freeway to freeway interchanges. This discontinuity makes it difficult for local traffic to navigate through local streets without having to use the freeways.

In addition, geometric deficiencies are prevalent throughout the project area due to the age of the facility. Left-hand entrances and exits, substandard vertical clearances and insufficient acceleration and deceleration lanes all play a role in reducing the capacity and safety of the corridor. Rehabilitation of the existing facility without constructing geometric improvements would not sufficiently address the impact these deficiencies have on operations within the corridor.

The Build Alternative would result in improved freeway capacity to meet future traffic needs by providing an additional through lane in each direction along I-94, along with improved acceleration, deceleration and auxiliary lanes. Continuous service drives would also be provided along I-94, M-10, and I-75 to allow for better connectivity of the
surface street system. In addition, the roadway facilities within the corridor would be redesigned to meet current design standards where practical and feasible. Together, these improvements are needed to provide safe and efficient traffic operations in the design year.
(2) All reasonable alternatives for design options, location and transportation system management type improvements (such as ramp metering, mass transit, and HOV facilities) have been assessed and provided for if currently justified, or provisions are included for accommodating such facilities if a future need is identified.

All reasonable alternatives were developed and evaluated to determine the best option for addressing current and projected travel demands, reducing traffic crashes, and rehabilitating I-94 pavement and bridges. Alternatives that did not meet the purpose and need of the study were eliminated, while other alternatives that did meet the goals, purpose, and need of the study were retained for further analysis. Some of the alternatives could not by themselves meet the goals or purpose and need of the project, but could be implemented to augment the alternatives retained. Once a Build Alternative was chosen, the alternatives retained for further study that were not incorporated into the Build Alternative were eliminated. The status of each alternative evaluated is listed below:

- No-Build. Retained as a Basis of Comparison; Later Eliminated.
- Enhanced No-Build. Retained; Later Eliminated.
- Use of Grand Trunk Western/Conrail Rail Corridor as a Truck Route; Eliminated from Further Consideration.
- Reconstruct I-94. Add High-Occupancy Vehicle (HOV) Lanes without Improvements to the $\mathrm{M}-10$ and I-75 Interchanges; Eliminated from Further Consideration.
- Reconstruct I-94. Add Unconventional Service Drives without Improvements to the M-10 and I-75 Interchanges; Eliminated from Further Consideration.
- Reconstruct I-94: Add Lanes and Provide Reserved Space for Future Expansion without Improvements to the M-10 and I-75 Interchanges. Eliminated from Further Consideration.
- Reconstruct I-94: Improvements to M-10 and I-75 Interchanges with CollectorDistributor Roads. Eliminated from Further Consideration.
- Reconstruct I-94. Original Design of Improvements to the M-10 and I-75 Interchanges with Continuous Service Drives; Eliminated from Further Consideration.
- Reconstruct I-94. Original Design of Improvements to the M-10 and I-75 Interchanges with Braided Ramps; Eliminated from Further Consideration.
- Reconstruct I-94. Refined Design of Improvements to the M-10 and I-75 Interchanges with Continuous Service Drives; Eliminated from Further Study.
- Reconstruct I-94. Refined Design of Improvements to the M-10 and I-75 Interchanges with Braided Ramps; Eliminated from Further Study.
- Reconstruct I-94. Refined Design of Improvements to the M-10 and I-75 Interchanges with Design Elements of Continuous Service Drives and Braided Ramps; Eliminated from Further Study.
- DEIS Build Alternative. Retained for Further Study; Later Eliminated.
- DEIS Build Alternative, Modification One. Retained for Further Study; Later Chosen as the FEIS Build Alternative (Recommended Alternative) with Refinements.
- DEIS Build Alternative, Modification Two. Retained for Further Study; Later Eliminated.
- DEIS Build Alternative, Modification Three. Retained for Further Study; Later Eliminated.
- Light Rail in the I-94 Median. Retained as Compatible with Initial Retained Alternatives; Later Eliminated.
- Transportation Systems Management (TSM) and Intelligent Transportation system (ITS). Retained as Compatible with the Build Alternative, but Eliminated as a Stand-Alone Alternative.
- Transit. Retained as Compatible with the Build Alternative, but Eliminated as a Stand-Alone Alternative:
o Modifications to Existing Bus Service;
o Bus Rapid Transit (BRT); and
o Regional Transit Initiatives.
A discussion of each alternative eliminated from further consideration is included in Chapter 4.0.

Based on the analysis of the alternatives and modifications, as well as comments received on the Draft Environmental Impact Statement (DEIS), the DEIS Build Alternative, Modification One, with refinements, is the recommended FEIS Build Alternative (Build Alternative or Recommended Alternative). This alternative addresses the engineering, community access and circulation, environment, and social and economic needs of the project area. It satisfies the purpose and need for the project and addresses public, stakeholder, and agency concerns.
(3) The proposed access point does not have a significant adverse impact on the safety and operation of the Interstate facility based on an analysis of current and future traffic. The operational analysis for existing conditions shall, particularly in urbanized areas, include an analysis of sections of Interstate to and including at least the first adjacent existing or proposed interchange on either side. Crossroads and other roads and streets shall be included in the analysis to the extent necessary to assure their ability to collect and distribute traffic to and from the interchange with new or revised access points.

Analysis of the Build Alternative illustrates that the project would have a substantial positive impact on the safety and the operation of the facilities within the project area. Improvements to the geometry of I-94 are anticipated to contribute to a reduction in the number and severity of traffic crashes by eliminating left-hand exits and entrances, reducing weaving maneuvers, and providing auxiliary and acceleration/deceleration lanes for safer movement onto and off of the freeway. In addition, reducing the number of non-standard corridor design features, along with the provision of an additional travel lane in each direction, would enhance the operational efficiency of the corridor, thereby increasing capacity and improving levels of service.

The traffic analysis was conducted under current year 1995 and future year 2025 traffic conditions, and included the l-94 freeway mainline and all interchanges within the project
limits, as well as the adjacent interchange beyond either end of the project limits. Since 1995, continual construction projects and numerous detours along I-94 have impacted normal traffic patterns and current traffic counts would not reflect an accurate condition; therefore, it was determined that the 1995 data would best represent the current traffic condition, and the traffic analysis was not updated to the year 2000. The supporting traffic analysis included evaluation of both freeway and surface street operations. Analysis methodology and results are presented in Chapter 5.0.
(4) The proposed access connects to a public road only and would provide for all traffic movements. Less than "full interchanges" for special purpose access for transit vehicles, for HOVs, or into park and ride lots may be considered on a case-by- case basis. The proposed access would be designed to meet or exceed current standards for Federal- aid projects on the Interstate System.

The existing access points within the project area all connect to the public road system. No new access points are provided. One new ramp at Chene Street is proposed; this ramp would complete a partial interchange, making it a "full interchange." All proposed access improvements are designed to meet or exceed American Association of State Highway and Transportation Officials (AASHTO) and Michigan Department of Transportation (MDOT) geometric design standards where practical and feasible.
(5) The proposal considers and is consistent with local and regional land use and transportation plans. Prior to final approval, all requests for new or revised access must be consistent with the metropolitan and/or statewide transportation plan, as appropriate, the applicable provisions of 23 CFR part 450 and the transportation conformity requirements of 40 CFR parts 51 and 93.

The Build Alternative is consistent with regional and statewide plans, as well as having met the acceptance of local officials. The 2015 Regional Transportation Plan (RTP) for southeast Michigan first identified I-94 as a study corridor with capacity, bridge, and pavement deficiencies. The Greater Detroit Area Freeway Rehabilitation Program Study concurred with the findings and identified I-94 as the freeway in greatest need for improvement. Subsequently, major improvements to I-94 have been included in the 2020 and 2025 SEMCOG Regional Transportation Plans, the MDOT 2004-2008 FiveYear Transportation Plan and the SEMCOG Transportation Improvement Program (TIP) for funding. The Recommended Alternative is included in the SEMCOG 2025 Regional Transportation Plan (RTP) for southeast Michigan, adopted on March 20, 2003. The study is also included in the SEMCOG Transportation Improvement Program (TIP) adopted on September 26, 2003. It is expected that SEMCOG will adopt the 2030 Regional Transportation Plan in November 2004 with the inclusion of the I-94 Rehabilitation Project.

In addition, the Build Alternative is supportive of local land use and transportation plans. The project is consistent with the current City of Detroit Master Plan, dated July 1992, and has been included in the most recent master plan for Wayne State University, dated September 2001. Service drive and surface roadway improvements included in the project would enhance access and beautify the project area. In August 1, 2003, the Detroit City Council unanimously passed a resolution in support of the Build Alternative, which was subsequently approved by the Mayor's Office.
(6) In areas where the potential exists for future multiple interchange additions, all requests for new or revised access are supported by a comprehensive Interstate network study with recommendations that address all proposed and desired access within the context of a long-term plan.

The project is supported by a comprehensive traffic study and is included in the SEMCOG 2025 Regional Transportation Plan and 2004-2006 Transportation Improvement Program, and in the MDOT 2004-2008 Five-Year Transportation Program. No new interchanges are being proposed at this time. Current interchange spacing in the project area ranges from 0.07 to 1.02 miles in length. As such, there is no potential for adding a new interchange, as it would violate AASHTO design standards for interchange spacing.
(7) The request for a new or revised access generated by new or expanded development demonstrates appropriate coordination between the development and related or otherwise required transportation system improvements.

The revised access points would adequately accommodate the design-year traffic volumes as determined through the SEMCOG travel demand forecasting model. That model allows for regional development. Development coordination and the discussion of the I-94 Recommended Alternative occurred with the city of Detroit Planning and Development Department and the neighborhood clusters. There have not been any requests for new or revised access due to development, other than adding the westbound off-ramp to Chene Street to complete the partial interchange. The majority of the existing l-94 ramps would be replaced in their current locations, or removed and replaced in the same vicinity. No new freeway entrance points are proposed.

These changes to the access points, as well as the continuous service drives, would provide for better roadway connectivity for the local streets and allows for existing and increased development in the area.
(8) The request for new or revised access contains information relative to the planning requirements and the status of the environmental processing of the proposal.

A Draft Environmental Impact Statement (DEIS) has been prepared for this project. The DEIS was presented to the public in March 2001. The Final Environmental Impact Statement (FEIS) is currently being prepared. The FEIS would be submitted to the FHWA for a Record of Decision (ROD) late 2004 to early 2005.

1.3 DESIGN EXCEPTIONS

Based on the preliminary engineering completed to date, all interchange improvements have been designed to meet or exceed AASHTO and MDOT geometric design standards where practical and feasible. However, some design exceptions would be required, based on constraints within the project corridor. The expected design exceptions are provided in greater detail in Section 6.2; they include:

- I-94 Dequindre Bridge: Shoulder width;
- Eastbound I-94, M-10 entrance ramps, Brush Street exit ramp and I-75 exit ramp: Ramp spacing;
- Eastbound I-94, Northbound and Southbound I-75 entrance ramp and Chene Street exit ramp: Ramp spacing;
- Westbound I-94, Brush Street entrance ramp and northbound and southbound M-10 exit ramp: Ramp spacing;
- Westbound I-94, Chene Street entrance ramp to southbound I-75 exit ramp: Ramp spacing;
- Northbound I-75, Eastbound I-94 entrance ramp and Clay Street exit ramp: Ramp spacing and auxiliary lane too short;
- Southbound I-75, Clay Street entrance ramp and eastbound and westbound I-94 exit ramps: Ramp spacing and auxiliary lane too short; and
- I-94 at the I-75 and M-10 interchanges, Horizontal sight distance (ramps).

1.4 RECOMMENDATIONS

The analyses of traffic operations, traffic crashes, and infrastructure deficiencies demonstrate the need for improvements within the I-94 project area. The Build Alternative provides the best solution to address the transportation needs of the area and region, while maintaining consistency with local and regional land use and transportation plans and goals. The project would have the following benefits:

- Increased capacity and operational efficiency throughout the corridor
- Improved safety through elimination of geometric deficiencies, including left-hand exit and entrance ramps
- Enhanced connectivity and capacity of the regional, interstate and international freight network
- Replacement of all pavement and structurally deficient bridges
- New or enhanced acceleration/deceleration and auxiliary lanes to improve traffic operations and safety
- Increased service drive continuity to:
o Improve local vehicular and pedestrian access to adjacent properties and developments;
o Accommodate buses;
o Provide detours for mainline traffic during traffic incidents;
o Provide better access for emergency vehicles; and
o Reduce traffic disruption during construction of the I-94 mainline
- Enhanced sidewalk continuity for pedestrians
- A visually pleasing facility to enhance adjacent communities and provide a pleasant driving experience

The I-94 Rehabilitation Project's Build Alternative is the best option to address the needs of the corridor while balancing impacts and constraints. It would eliminate bottlenecks, maintain connectivity, and reduce the severity and duration of congestion throughout the project corridor. The Build Alternative meets the future traffic demand for the project and satisfies the purpose and need for this project. It is consistent with local and regional transportation and land use plans, and has the expressed support of the city of Detroit. Project implementation would be done in a balanced and cost-effective manner, while impacts to both the human and natural environment are considered.

2.0 INTRODUCTION

Within the project area, I-94 is a six-lane facility with three lanes in each direction. The project area is 6.7 miles long, extending from just east of the I-96 interchange to the Conner Avenue interchange, all within the city of Detroit. The project area is shown below and illustrated in Figure 1 (see Volume 2). Within a short distance of approximately 1.2 miles, I-94 intersects I-96, M-10, and I-75. The freeway is currently capacitydeficient, with persistent congestion during peak periods. In addition, traffic currently merges and exits at distances less than that required by current American Association of State Highway and Transportation Officials (AASHTO) design standards, which further reduces

I-94 Rehabilitation Project - Traffic Study and Project Limits the efficiency and safety of the corridor.

The I-94 Rehabilitation Project would involve the reconstruction and rehabilitation of the corridor, including the freeway-to-freeway interchanges with M-10 and I-75, which are nearing the end of their useful life. All bridges and ramps within the project area would be redesigned and reconstructed, including the addition of auxiliary, acceleration, and deceleration lanes. The project would include an additional lane in each direction along $\mathrm{I}-94$ and provide continuous service drives through the I-94 interchanges with $\mathrm{M}-10$ and $\mathrm{I}-75$. Full shoulders along the inside and outside lanes of the I-94 project corridor would be included in the design. These improvements would bring the I-94 freeway up to current geometric standards where practical and feasible.

This chapter describes the new or modified access within the project area, issues of concern or controversy over this project, the project's estimated cost, and the distance to adjacent interchanges.

2.1 PROPOSED NEW OR MODIFIED ACCESS

This section describes the general design of the Build Alternative, as well as new or modified access within the project area.

2.1.1 General Design of the Build Alternative

The general roadway design of the Build Alternative is described in this section, which includes a description and illustration of the Build Alternative, where auxiliary lanes would be provided and relocated, and removed access points. Figures 3A-30 and Figures 4A - 40 (see Volume 2) depict the existing and Build Alternative configurations of the project area, respectively. Chapter 6.0 contains the design criteria for the Build Alternative, and presents required design exceptions.

2.1.1.1 Typical Section

A typical section illustrating the proposed roadway is shown below, and illustrated in Figure 2 (see Volume 2). Each lane and the mainline outside shoulder would be 12 feet wide; the inside shoulder would be 14 feet wide. Six to 10 feet of space would be provided within the median.

The continuous service drives would contain two 11foot wide travel lanes and an 8 -foot wide shoulder, based on an agreement between the city of Detroit, the Federal Highway Administration, and the Michigan Department of Transportation. A three-lane service drive would be provided along the eastbound I-94 service drive between $\mathrm{M}-10$ and I-75, based on the projected volume of traffic in this area. One-lane continuous

Build Alternative Typical Cross-Section services would be provided in all directions through the I-94 interchanges with M-10 and I-75. Typically, sidewalks adjacent to the continuous service drives would be 6 feet wide.

2.1.1.2 Continuous Service Drives and Surface Street Intersections

In most cases, the Build Alternative would include two-lane, one-way, continuous service drives adjacent to the I-94 mainline on both the north and south sides. The eastbound $\mathrm{I}-94$ service drive would become a three-lane service drive between $\mathrm{M}-10$ and I-75, based on the projected volume of traffic in this area. The eastbound I-94 continuous service drive would begin east of the I-94/I-96 interchange and would continue through the I-94 / Conner Avenue interchange to become the Conner Avenue on-ramp. The westbound I-94 continuous service drive would begin at the I-94 / Conner Avenue exit ramp and would continue to Grand River Avenue, east of the I-94/I-96 interchange. A one-lane service drive would continue through the I-94/M-10 and the I-94/I-75 interchanges.

The service drives would provide access to nearby residences, businesses, and institutions and would separate local and through trips. The service drives could provide alternative access during traffic incidents and maintenance of the mainline. Sidewalks in compliance with Americans with Disabilities Act design guidelines also would be included.

Continuous service drives with sidewalks would also be added to $\mathrm{M}-10$ and $\mathrm{I}-75$ and connect to existing service drives. The southbound $\mathrm{M}-10$ service drive would begin north of Pallister Avenue and end at the Forest Avenue entrance ramp to southbound $\mathrm{M}-10$. The northbound $\mathrm{M}-10$ service drive would begin at the northbound $\mathrm{M}-10$ exit ramp to Forest Avenue and end north of Seward Avenue. A one-lane service drive would continue through the I-94/M-10 interchange. The northbound I-75 service drive would begin at the northbound I-75 Warren Avenue exit ramp and end at the Clay Avenue entrance ramp. The southbound I-75 service drive would begin at the southbound I-75 exit ramp to Clay Avenue and end at the Warren Avenue exit ramp to southbound I-75. A one-lane service drive would continue through the I-94/I-75 interchange.

Locations where a mainline off-ramp merges with a service drive would be controlled with signage that is consistent with the signage currently being used in merge situations of this type in southeast Michigan. Stop-control for the service road and free movement for the off-ramp is the typical control setup for these merge situations.

The construction and reconfiguration of service drives will also result in numerous surface intersection improvements. The design of service drive intersections under the Build Alternative was based on all necessary and reasonable geometric configurations and traffic controls necessary to operate at acceptable levels of service through the design year (see Section 5.6). In addition, coordinated signal timing was assumed where appropriate to best represent optimum operating conditions. The proposed geometric configurations of surface street intersections are illustrated in Figures 4A 40.

2.1.1.3 I-94 Mainline

The Build Alternative would include the addition of one driving lane in each direction, redesign of exit and entrance ramps, and elimination of some ramps. The alternative would lengthen acceleration and deceleration lanes to correct many of the deficient weaving movements. Exit and entrance ramps east of I-75 would be redesigned to provide sufficient distances between them to meet current design standards where practical and feasible.

Some bridges over I-94 would be replaced in their existing locations as part of the Build Alternative. The majority of pedestrian overpasses would be reconstructed and some would be combined with vehicular bridges.

Full auxiliary lanes would be added along portions of I-94 between exit and entrance ramps for vehicle merging, acceleration, and deceleration. Acceleration lanes would allow vehicles to accelerate before merging with traffic in the travel lanes. Deceleration lanes would allow vehicles to slow down before exiting l-94. Presently, vehicles trying to enter l-94 move directly from an entrance ramp onto the freeway mainline. No
acceleration lanes are available to allow entering vehicles to approach the speed of vehicles already on I-94, and no deceleration lanes are provided for vehicles to slow down to exit the freeway safely.

The locations of the auxiliary lanes for eastbound I-94 would be between:

- Westbound I-96 entrance ramp and eastbound I-96 entrance ramp;
- Eastbound I-96 entrance ramp and Linwood Avenue entrance ramp;
- Linwood Avenue entrance ramp and Trumbull Avenue exit ramp;
- M-10 entrance ramp and Brush Street exit ramp;
- I-75 entrance ramp and Chene Street exit ramp;
- Chene Street entrance ramp and Mt. Elliott Avenue exit ramp;
- Mt. Elliott Avenue entrance ramp and Van Dyke Avenue exit ramp;
- Van Dyke Avenue entrance ramp and Gratiot Avenue exit ramp; and
- Gratiot Avenue entrance ramp and Conner Avenue exit ramp.

The locations of the auxiliary lanes for westbound I-94 would be between:

- Conner Avenue entrance ramp and Gratiot Avenue exit ramp;
- Gratiot Avenue entrance ramp and Van Dyke Avenue exit ramp;
- Van Dyke Avenue entrance ramp and Mt. Elliott Avenue exit ramp;
- Mt. Elliott Avenue entrance ramp and Chene Street exit ramp;
- Chene Street entrance ramp and southbound I-75 exit ramp;
- I-75 entrance ramp and Brush Street entrance ramp;
- M-10 entrance ramp and Trumbull Avenue entrance ramp; and
- Trumbull Avenue entrance ramp and Linwood Avenue exit ramp.

The M-10 and I-75 interchanges would be redesigned to include right-hand exit and entrance ramps. Retaining walls would be used along l-94 to reduce right-of-way acquisition and the number of displacements.

2.1.1.4 M-10 Mainline

The Build Alternative would involve the reconstruction of $\mathrm{M}-10$ from West Grand Boulevard to $1 / 2$-mile south of Forest Avenue. It would include lengthening of acceleration and deceleration lanes, elimination of inadequate weaves by relocating ramps, and provision of auxiliary lanes approaching and departing two-lane exit and entrance ramps.

Bridges over $\mathrm{M}-10$ would be reconstructed because span lengths are inadequate to accommodate the proposed $\mathrm{M}-10$ cross-section as part of the Build Alternative. The existing Canfield Avenue pedestrian bridge would be removed and replaced with a vehicular/pedestrian bridge near Selden Avenue due to the reconfiguration of the Forest Avenue interchange (see Section 2.1.1.6). Full auxiliary lanes would be added and designed per AASHTO requirements along portions of $\mathrm{M}-10$ approaching two-lane entrance and exit ramp terminals.

Due to the inadequate spacing between the northbound Forest Avenue entrance ramp and the two-lane exit to eastbound and westbound I-94, the Forest Avenue exit and
entrance ramps would be "braided" (one ramp bridging over the other) in the Build Alternative. Although the ramp configuration exists, an additional movement is introduced in the proposed configuration; i.e., the northbound $\mathrm{M}-10$ existing exit to westbound I-94 would be converted from a left-hand exit to a right-hand exit. This would shift additional traffic to the right-hand ramp, which may result in operational issues that do not occur under existing conditions. Based on these items, the Forest Avenue exit and entrance ramps would be braided in the Build Alternative. An example of a braided ramp configuration is illustrated below. The 750 -foot distance on southbound $\mathrm{M}-10$ between the new eastbound I -94-to-southbound M -10 connector ramp and the existing Forest Avenue exit ramp does not meet the required ramp spacing distance of 2,000 feet. Thus, the Forest off ramp is relocated north of Warren on southbound $\mathrm{M}-10$. Any traffic from eastbound I-94 wanting to go to the southbound $\mathrm{M}-10$ service drive must exit on I-94 at Trumbull and utilize the

Example: Braided Ramp Configuration continuous service drives.

Due to the inadequate spacing between the Milwaukee Avenue entrance ramp to southbound $\mathrm{M}-10$ and the eastbound and westbound $\mathrm{I}-94$ exit ramp, modifications would be made under the Build Alternative. The existing Milwaukee Avenue entrance ramp would remain in its existing location but would be signed for I-94 traffic only; that is, vehicles using this entrance ramp can only access the l-94 ramps. In addition, an auxiliary lane would be provided along southbound $\mathrm{M}-10$ on the approach to the I-94 exit ramp. For vehicles destined for southbound $\mathrm{M}-10$, an additional ramp would be constructed along the southbound $\mathrm{M}-10$ service drive (downstream of the existing Milwaukee Avenue entrance ramp) as a braid under the eastbound and westbound I-94 ramps. This new entrance ramp would be configured as a weave with the Warren Avenue exit ramp. The addition of the auxiliary lane prior to the I-94 exit and eliminating the weave movement between Milwaukee Avenue to southbound $\mathrm{M}-10$ and southbound $\mathrm{M}-10$ to eastbound and westbound I-94 would improve operations considerably.

The locations of the auxiliary lanes for northbound $\mathrm{M}-10$ would be:

- Forest Avenue entrance ramp and I-94 exit ramp; and
- I-94 entrance ramp to M-10.

The locations of the auxiliary lanes for southbound $\mathrm{M}-10$ would be:

- Milwaukee Avenue entrance ramp and Warren Avenue exit ramp;
- M-10 to I-94 eastbound/westbound exit ramp; and
- I-94 eastbound/westbound entrance ramp to Elm Street (Grand River Avenue) as a mandatory exit.

Retaining walls would be used along $\mathrm{M}-10$ to reduce right-of-way acquisition and the number of displacements.

2.1.1.5 I-75 Mainline

The Build Alternative would minimize reconstruction along I-75 to the extent necessary to accommodate the I-94/I-75 interchange. During the development of the engineering report, design elements within the I-94/I-75 interchange would be established so as not to preclude future improvement alternatives along l-75. These might include:

- Providing adequate clear zone between ramp fly-over piers crossing I-75 so as to not preclude future general-purpose lanes;
- Offsetting ramps adjacent to I-75 to reduce future reconstruction to terminals only; and
- Locating service drives and associated retaining walls to provide maximum design flexibility, and other options as appropriate.

No crossroad bridges over I-75 would be replaced/reconstructed as part of the Build Alternative. With the reconstruction of I-94/I-75 interchange, the bridges carrying Ferry Avenue and Piquette Avenue over I-75 would be removed. Access across I-75 would be maintained via the continuous service drives along I-94 and I-75.

To accommodate service drives along $1-75$, retaining walls would be required at various locations, i.e., where a service drive is located along an existing side-slope, adjacent to new ramps, or to minimize right-of-way or building displacements. The precise limits of reconstruction along l-75 would be determined during the engineering report phase which is tentatively scheduled to begin in late 2004 or early 2005.

2.1.1.6 Relocated and Removed Access Points

In an effort to improve operations and safety, some l-94 ramps would be removed and not replaced. Other I-94 ramps would be removed and replaced at new locations to maximize ramp spacing, increase weave distances, and/or improve ramp geometry:

- The eastbound I-94 entrance ramp from Fourteenth Street would be removed, and access would be provided via the I-94 service drives. Eastbound freeway access is available four blocks west via the eastbound service drive between Linwood and Stanton streets.
- The eastbound I-94 exit ramp to John R Avenue would be removed and replaced with an exit ramp to Brush Street.
- The eastbound I-94 entrance ramp from Beaubien Street would be removed, and access would be provided via the I-94 service drives at Chene Street.
- The eastbound I-94 exit and entrance ramps to and from French Road would be removed, and access would be provided either by the Gratiot Avenue or Conner Avenue ramps. From both interchanges, the continuous service drives along I-94 could be utilized.
- The westbound I-94 entrance ramp from French Road would be removed, and access would be provided by either the Gratiot Avenue or Conner Avenue ramps. From both of these interchanges, the continuous service drives along I-94 could be utilized.
- The westbound I-94 entrance ramp from John R Avenue would be removed and replaced with an entrance ramp from Brush Street.

Three M-10 ramps would be removed from their current locations and replaced at new locations:

- The northbound M-10 entrance ramp from Forest Avenue would be removed and replaced south of the current location. The new entrance ramp would be braided with the Forest Avenue exit ramp.
- The northbound M-10 exit ramp to Milwaukee Avenue would be removed and replaced with an exit ramp located south of Holden Street. Access would be provided by the continuous service drives.
- The southbound $\mathrm{M}-10$ exit ramp to Forest Avenue would be removed and replaced with an exit ramp north of Warren Avenue. Access would be provided by the continuous service drives.

One l-75 ramp would be removed from the current location and replaced at a new location:

- Southbound I-75 exit ramp to Warren Avenue would be removed and replaced with an exit ramp located north of the I-94 mainline. Access would be provided by the continuous service drives.

2.1.1.7 Additional Ramps

The majority of the existing l-94 exit and entrance ramps would be replaced in their current locations, removed from their current locations and not replaced, or removed and replaced at a new location. No new freeway entrance points are proposed. However, a new exit ramp is proposed from westbound I-94 to Chene Street to complete a partial interchange that currently exists. The Build Alternative would eliminate all partial interchanges along I-94 east of I-75 in the project area.

In addition, along southbound $\mathrm{M}-10$, a new Milwaukee Avenue entrance ramp is proposed to maintain existing access while correcting deficient spacing between ramps. Due to the close proximity of the existing Milwaukee Avenue entrance ramp to the I-94 exit ramp, access from Milwaukee Avenue under the Build Alternative would be accomplished using two different ramps:

The existing southbound $\mathrm{M}-10$ Milwaukee Avenue entrance ramp would now have access only to I-94; vehicles could no longer access southbound $\mathrm{M}-10$ from that ramp.

The proposed relocated Milwaukee Avenue entrance ramp would be located further south of the existing ramp. The new ramp would enable vehicles to access southbound $\mathrm{M}-10$ via the service drive south of Holden Street and Elijah McCoy Drive.

The addition of this ramp would maintain the existing access to both $\mathrm{I}-94$ and $\mathrm{M}-10$ from Milwaukee Avenue.

2.1.2 Existing and Proposed Access Changes

Reconstruction of all project area interchanges is proposed under the Build Alternative in order to improve the physical condition of the facilities. Most access points would be rebuilt in their current roadway configuration. However, in order to meet current design
standards, including spacing requirements between interchanges, in some cases modification to access points are required. These modifications would improve or maintain access to the area, while increasing safety along the corridor.

The following I-94 interchanges are proposed to reconstructed under the Build Alternative:

- I-94 / Linwood Avenue
- I-94 / Trumbull Avenue
- I-94 / M-10
- I-94 / Brush Street
- I-94 / Beaubien Street
- I-94 / I-75
- I-94 / Russell Street
- I-94 / Chene Street
- I-94 / Mt. Elliott Avenue
- I-94 / Van Dyke Avenue
- I-94 / Gratiot Avenue
- I-94 / Conner Avenue

Based on the reconstruction of the l-94 freeway-to-freeway interchanges with $\mathrm{M}-10$ and I-75, the following ramps would also need to be reconstructed:

- $\mathrm{M}-10$ / Forest Avenue
- M-10 / Milwaukee Avenue
- Southbound I-75 / Warren

Avenue exit ramp
In some locations, traffic currently merges and exits at distances less than that required by current AASHTO design standards, which provide greater distances for traffic turbulence to subside. The limited distances between access points results in weaving problems. Some exit and entrance ramps were therefore eliminated from the project area due to the close spacing to adjacent interchanges. In these instances, access would be provided by the continuous service drives running parallel to the freeway. Section 2.1.1.4 lists ramps that would be removed from their current locations and not replaced, and ramps that would be removed from their current locations and replaced at a new location.

The following subsections describe interstate access points that would be rebuilt with a different roadway configuration, relocated to a new location, or eliminated from the proposed design. Non-interstate ramps to local roadways ($\mathrm{M}-10$) do not require a change in access approval, per FHWA guidelines; therefore, they are not included in the following subsections. Details on levels of service (a measure of operational performance and driver frustration) are provided in Section 3.1.5.3, and results under the Build Alternative are summarized in Figures 19A - 19F (see Volume 2). Further information on the affects of access changes on anticipated volumes under the Build Alternative can be found in Section 5.3.

2.1.2.1 I-94 / Fourteenth Street Interchange

The Fourteenth Street entrance ramp to eastbound I-94 is a single-lane ramp that currently serves a low volume of traffic (less than 350 vehicles per hour). No acceleration lane is provided for this entrance ramp, and therefore vehicles must enter the freeway at lower speeds than that of mainline traffic. This condition can result in sudden maneuvers by mainline vehicles to accommodate entering traffic, in some cases causing vehicular crashes. The primary crash types in this area of the Fourteenth Street entrance ramp are rear-end crashes, followed by fixed-object and sideswipe-samedirection crashes. These crashes are common where stop-and-go conditions exist.

This entrance ramp would be eliminated in the Build Alternative due to the deficient spacing between the Linwood Avenue entrance ramp and the Trumbull Avenue entrance ramp. The existing Fourteenth Street ramp could not be accommodated geometrically without significant design exceptions. Access would be provided by the continuous service running parallel to the l-94 freeway.

2.1.2.2 I-94 / M-10 Interchange

The I-94/M-10 interchange is a complete system interchange connecting I-94 with $\mathrm{M}-10$, a multi-lane regional freeway. Originally constructed in the early 1950s, the interchange has reached the end of its useful life, as the design life of a highway facility is typically 20 years. Without reconstruction of the interchange, the current condition, both operational and physical, would severely limit the ability to improve mobility and the condition of the l-94 corridor.

The current configuration of the l-94/M-10 interchange, which includes left-hand entrances and exits, results in operational issues and constrained capacity. Within a distance of approximately 1.2 miles, $\mathrm{I}-94$ intersects $\mathrm{I}-96, \mathrm{M}-10$, and $\mathrm{I}-75$. The existing left-hand exits, coupled with the close spacing of other interchanges within the project area, encourages vehicles to weave across lanes on I-94 at relatively high speeds. For instance, a 1994 origin-destination study found that approximately 25 percent of southbound $\mathrm{M}-10$ to eastbound I-94 vehicles travel to southbound I-75 during the AM peak hour. Therefore, approximately 25 percent of the vehicles entering eastbound I-94 on the left side at $\mathrm{M}-10$ weave across three lanes of travel to exit to southbound I-75 on the right side over a distance of less than 0.75 miles.

In addition, the interchange has numerous limitations in terms of its physical layout and condition. Vehicular and pedestrian bridges are aging, and the ratings of the physical condition of the bridges that make up the interchange are substandard. The interchange bridges currently have sub-standard vertical underclearance. Furthermore, under the current interchange configuration, the ultimate cross-section for l-94 could not be constructed, since many of the existing interchange pier locations would conflict with the proposed locations of the additional I-94 general-purpose or auxiliary lanes.

The Build Alternative would include the redesign and reconstruction of the I-94/M-10 interchange, eliminating all left-hand ramps. Traffic interchanging between the two freeways would be accommodated via directional fly-over ramps, and would enter and exit on the right. In addition, the new design would accommodate continuous service drives through the interchange. The proposed design is shown in Figures 4B and 4L, Volume 2.

2.1.2.3 I-94 / John R Avenue Interchange

Currently, the John R Avenue interchange consists of a one-lane eastbound I-94 exit ramp and a one-lane westbound I-94 entrance ramp. The existing ramp locations, in relation to the $\mathrm{M}-10$ and $\mathrm{I}-75$ interchanges, do not meet AASHTO ramp spacing requirements. More than half the crashes that occur between $\mathrm{M}-10$ and John R Avenue are rear-end crashes, most likely caused by congestion and weaving vehicles.

Based on the redesign of the I-94/M-10 and I-94/I-75 interchanges, the existing John R Avenue ramps could not fit geometrically without additional significant design exceptions. Early in the project, it was suggested that this interchange should be eliminated due to the close proximity with the I-94 interchanges with M-10 and I-75. However, the City of Detroit, New Center Area, Wayne State University, and the Detroit Medical Center all expressed opposition to this suggestion, stating the interchange was vital to their businesses and needs.

In order to reduce the number of design exceptions, the Build Alternative would include relocation of the John R Avenue ramps one block east to Brush Street, keeping the roadway configuration as it is today. The eastbound Brush Street exit ramp would be shifted east to maximize the distance provided for weaving maneuvers along l-94 between M-10 and Brush Street. The westbound Brush Street entrance ramp would be shifted west to meet minimum AASHTO ramp-spacing requirements between the twolane I-75 entrance ramp and the Brush Street entrance ramp. The additional lanes within this segment of I-94, in addition to proposed design of the I-94/M-10 and I-94/I-75 interchanges, would help to reduce congestion and weaving in this area.

Various lane configurations were analyzed for this section of the freeway. Analysis results are in the I-94 Rehabilitation Project Traffic Report, Volume 2: Simulation of Future Conditions (January 2001) and Traffic Report, Volume 3: Simulation of Year 2025 Conditions (May 2002). The Volume 3 traffic report indicates that this section of the I-94 freeway is anticipated to operate at acceptable levels of service during the AM and PM peak hours (Level of Service E or better).

Access to John R Avenue from the new ramp locations would be provided by the continuous service drives running parallel to the I-94 mainline. The proposed design is shown in Figures 4C (John R Avenue) and 4D (Brush Street), Volume 2.

2.1.2.4 I-94 / Beaubien Street Interchange

Currently, the Beaubien Street interchange consists of a one-lane eastbound I-94 entrance ramp from Beaubien Street. Based on the redesign of the $\mathrm{I}-94 / \mathrm{M}-10$ and I-94/I-75 interchanges, the relocation of the John R Avenue ramps to Brush Street, and the location of the Russell Street exit ramp, the existing Beaubien Street entrance ramp could not fit geometrically without significant design exceptions and safety concerns. Due to the proximity between the Beaubien Street entrance ramp and the Russell Street exit ramp (approximately 870 feet separate the ramp gore points), significant weaving maneuvers occur within a short distance.

A design option was proposed that would retain the Beaubien Street entrance ramp and eliminate the Russell Street exit ramp to address the inadequate ramp spacing. However, the Russell Street exit allows truck traffic to access nearby industrial sites in the vicinity without traveling through residential neighborhoods. Several industrial sites (Detroit Department of Transportation garages and offices, the Thorn Apple Valley Plant, and other businesses) are located in the southeast quadrant of the I-94/I-75 interchange, and rely on this ramp for heavy vehicle access to their property. In order to avoid inducing truck traffic on residential streets, the Beaubien Street entrance ramp would be removed and the Russell Street exit ramp retained under the proposed Build Alternative.

The removal of the Beaubien Street entrance ramp would improve safety by eliminating the associated weaving maneuver. Access to l-94 would instead be provided using the Chene Street entrance ramp, which could be accessed using the continuous service drives running parallel to the I-94 mainline.

2.1.2.5 I-94 / I-75 Interchange

The I-94/I-75 interchange is a complete system interchange connecting two multi-lane interstate freeways. Originally constructed in the 1960s, the interchange has reached the end of its useful life, as the design life of a highway facility is typically 20 years. In 2002, portions of the I-94/I-75 interchange were rehabilitated, including deck replacements on all bridges within the interchange (a portion of the northbound/southbound l-75-toeastbound I-94 ramp was fully reconstructed in early 2004 due to damage from a truck crash). However, while the physical condition of the interchange has been improved, without reconstruction, overall benefits of the Build Alternative, such as construction of additional mainline lanes and continuous service drives, cannot be achieved.

Under the current interchange configuration, the ultimate cross-section for I-94 could not be constructed, since many of the existing interchange pier locations would conflict with the proposed locations of the additional I-94 general-purpose or auxiliary lanes. Accommodating the additional general-purpose lane in each direction without fully reconstructing the interchange would require an elevated structure carrying I-94 traffic over l-75 (see Section 4.1.4). This configuration would significantly increase the cost of the project and would be aesthetically displeasing to people living in the area.

In addition, continuous service drives could not be accommodated without full reconstruction of the interchange. This feature is a critical element of mobility in the corridor, as it enables improved local access while reducing unnecessary freeway trips.

Under the Build Alternative design, all traffic interchanging between I-94 and I-75 would be accommodated via directional fly-over ramps, and would enter and exit on the right. Single-lane exit ramps would be provided for I-94 traffic exiting to I-75, with each ramp splitting to serve the two connecting directions. Traffic connecting from I-75 to I-94 would be served with two-lane exit ramps. Ramp merging is designed based on the volume of the maneuver, and auxiliary lanes are provided where desirable and feasible. In addition, the design would accommodate continuous service drives through the interchange. The proposed design is shown in Figures 4D and 4N, Volume 2.

2.1.2.6 I-94 / Chene Street Interchange

Currently, the I-94 / Chene Street interchange is a partial interchange consisting of eastbound I-94 exit and entrance ramps and an entrance ramp to westbound I-94. All ramps are single-lane ramps, currently located between the I-94 interchanges with I-75 and Mt. Elliott Avenue. The Build Alternative would complete the I-94 / Chene Street interchange by providing a westbound I-94 exit ramp.

The addition of a westbound exit ramp at Chene Street would improve traffic circulation of trucks traveling to the industrial area east of the I-75 interchange by providing a direct connection. The industrial area includes the Detroit Department of Transportation garages and offices, the General Motors Cadillac Plant, and the Thorn Apple Valley

Plant. Currently, heavy vehicles must exit westbound I-94 at either Mt. Elliott Avenue or Beaubien Street and travel along the service drives or through residential neighborhoods. The new exit ramp would keep heavy vehicles off the surface streets and on the freeway for a longer period of time. In addition to the proposed westbound exit ramp, the eastbound I-94 exit ramp to Chene Street would be rebuilt as a two-lane exit ramp. The proposed design is shown in Figure 4F, Volume 2.

2.1.2.7 I-94 / Mt. Elliott Avenue Interchange

Currently, the I-94 / Mt. Elliott Avenue interchange is a complete diamond interchange. However, the westbound l-94 entrance ramp is located west of the interchange near Lucky Street. The proposed Build Alternative would shift the westbound I-94 entrance ramp east of its current location to form a standard diamond interchange. All existing access would be maintained under this proposed design. The one-lane exit and entrance ramps would connect to the continuous service drives that run parallel to l-94. Advanced U-turns would be provided to the east and west sides of Mt. Elliott Avenue, allowing service drive traffic to make a U-turn prior to the Mt. Elliott Avenue intersection. The proposed design is shown in Figure 4H, Volume 2.

2.1.2.8 I-94 / Gratiot Avenue Interchange

Currently the I-94 / Gratiot Avenue interchange is a partial cloverleaf configuration with ramps in the northwest and southeast quadrants. The eastbound and westbound I-94 exit ramps are one-lane loop ramps, flaring to two-lanes at the intersection. The ramp terminals are signalized and allow right-turn movements only from the off-ramps. Onelane entrance ramps to eastbound and westbound I-94 also are provided.

Presently, the primary crash types in this area are rear-end crashes, followed by fixedobject and sideswipe-same-direction crashes. This crash pattern could be symptomatic of the absence of deceleration and acceleration lanes for Gratiot Avenue traffic entering and exiting I-94. Without acceleration/deceleration lanes, vehicles must enter and exit the freeway at slower speeds than freeway vehicles, which can result in sudden slowing or lane change maneuvers by mainline traffic that can result in crashes.

Under the proposed Build Alternative, the Gratiot Avenue interchange would be reconstructed as a diamond interchange, with all current access being maintained under the new configuration. Safety would be improved with the addition of auxiliary lanes, allowing entering or exiting vehicles to adjust speed without interfering with mainline traffic. The one-lane exit and entrance ramps would connect to the continuous service drives located parallel to the I-94 freeway. All movements would be provided for at the service drive intersections with Gratiot Avenue. An advanced U-turn would be provided on the east side of Gratiot Avenue, allowing the westbound I-94 service drive to make a U-turn prior to the Gratiot Avenue intersection. The proposed design is shown in Figure 4J, Volume 2.

2.1.2.9 I-94 / French Road Interchange

The I-94 / French Road interchange is a partial diamond interchange with single-lane eastbound I-94 exit and entrance ramps and westbound I-94 entrance ramp, located between the I-94 interchanges with Gratiot and Conner avenues. This is a low-volume
interchange, with ramps anticipated to carry less than 200 vehicles in the AM peak hour and 320 vehicles in the PM peak hour by the year 2025.

Based on the redesign of the Gratiot Avenue and Conner Avenue interchanges to current AASHTO standards, the I-94 / French Street interchange could not fit geometrically without significant design exceptions and safety concerns. Therefore, the interchange would be removed under the proposed Build Alternative. Removal of this interchange would have a positive impact on safety by reducing the number of conflict points (number of ramps intersecting with the freeway). Access would be provided by the continuous service drives located parallel to the I-94 freeway.

2.1.2.10 I-94 / Conner Avenue Interchange

Currently, the I-94 / Conner Avenue interchange is comprised of directional ramps and turnaround lanes in a unique configuration that can be confusing to motorists. Northbound and southbound Conner Avenue diverge through the interchange area to accommodate directional ramps and crossover movements within the median area between the two directions. The existing eastbound l-94 exit ramp merges with southbound Conner Avenue. Vehicles can either continue southbound or use a turnaround to travel northbound. Similarly, the existing westbound I-94 exit ramp connects to northbound Conner Avenue. Vehicles can either turn right to continue along northbound Conner Avenue, or they can continue straight where they loop around and connect on the left side of southbound Conner Avenue. Northbound and southbound Conner Avenue each has a one-lane westbound I-94 entrance ramp. Southbound Conner Avenue must use a turnaround to merge with northbound Conner Avenue vehicles before entering eastbound I-94.

There are a high number of rear-end crashes located east of the interchange along I-94, followed by fixed-object and sideswipe-same-direction crashes. This crash pattern could be symptomatic of the absence of deceleration and acceleration lanes for Conner Avenue traffic entering and exiting l-94. Without acceleration/deceleration lanes, vehicles must enter and exit the freeway at slower speeds than freeway vehicles, which can result in sudden slowing or lane change maneuvers by mainline traffic that can result in crashes.

Under the Build Alternative, the I-94 / Conner Avenue interchange would be reconstructed as a diamond interchange. This configuration would greatly simplify operations while maintaining all access that is currently provided. The one-lane eastbound I-94 exit ramp and the westbound I-94 entrance ramp would connect to the continuous service drives running parallel to the I-94 freeway. The eastbound I-94 service drive would become the Conner Avenue eastbound I-94 entrance ramp, once a vehicle passes through the intersection. The westbound I-94 Conner Avenue exit ramp would become the westbound I-94 service drive, once a vehicle passes through the intersection. All movements would be provided for at the service drive intersections with Conner Avenue. Safety would be improved with the traditional interchange design and the addition of auxiliary, acceleration, and deceleration lanes, allowing vehicles to speed up or slow down prior to mixing with freeway vehicles. An advanced U-turn would be provided on the west side of Conner Avenue, allowing the eastbound I-94 service drive to make a U-turn prior to the Conner Avenue intersection. The proposed design is shown in Figure 4L, Volume 2.

2.1.2.11 Southbound I-75 / Warren Avenue exit ramp

The southbound I-75 exit ramp to Warren Avenue is currently part of a braided ramp configuration, where the Warren Avenue exit ramp passes over the entrance ramp from I-94. Presently, I-94 vehicles entering southbound I-75 cannot exit at Warren Avenue.

Under the Build Alternative, the exit ramp to Warren Avenue would be relocated to the north, connecting to the southbound I-75 continuous service drive prior to the eastbound and westbound I-94 entrance ramps merging onto southbound I-75. The relocation of the ramp would improve access to the area for traffic along I-75 by enabling exiting traffic to access Ferry Avenue from the off-ramp as well. The proposed design is shown in Figure 4P, Volume 2.

2.2 ISSUES OF CONCERN OR CONTROVERSY

In the late 1990s, concerns were expressed at public meetings and by the City of Detroit about neighborhood cohesion and the number of residential, commercial, and industrial impacts. In order to address these concerns, an engineering value planning team was assembled in 1999 to refine and modify the design of the I-94 interchanges with M-10 and $\mathrm{I}-75$. As a result of the value planning process, significant design enhancements were identified, and property and displacement impacts were reduced. This is included in the Draft Environmental Impact Statement (DEIS).

Comments on the DEIS and the adoption by the SEMCOG General Assembly of the transit report, Improving Transit in Southeast Michigan: A Framework for Action (October 2001), caused the study team to consider modifications to the DEIS Build Alternative. The original DEIS Build Alternative included provision of median space for future use for rail transit along the I-94 corridor. However, comments received during the DEIS process indicated that a narrower cross-section was desired by the community to reduce impacts on neighboring properties and reduce displacements. In addition, the Improving Transit in Southeast Michigan: A Framework for Action report indicated that while transit was considered for the I-94 corridor, it was not a recommended transit corridor. The study team therefore determined that the reserved space in the median could be eliminated, as there was no adopted regional plan for transit that included the I-94 corridor as a part of a regional transit system for southeast Michigan.

Based on the public comments and the results of the transit report, Improving Transit in Southeast Michigan: A Framework for Action (October 2001), three modifications to the DEIS Build Alternative were developed:

1. DEIS Build Alternative Modification One: Reduce the service drives to two 11foot through lanes with an 8 -foot multi-use lane ${ }^{1}$ (a 10 -foot reduction in width on each side) and eliminate the reserved space in the median reducing the median width to approximately 6 to 10 feet.

[^2]2. DEIS Build Alternative Modification Two: Reduce the service drives to two 11foot through lanes with an 8 -foot multi-use lane ${ }^{1}$ (a 10-foot reduction in width on each side) and retain the 30 -foot reserved space in the median.
3. DEIS Build Alternative Modification Three: Retain the three-lane service drives on each side of the mainline and eliminate the reserved space in the median reducing the median width to approximately 6 to 10 feet.

It is assumed that each modification to the DEIS Build Alternative would contain 12- to 14 -foot inside shoulders on the mainline in addition to the median widths listed above.

The three modifications to the DEIS Build Alternative were evaluated against the following alternatives in order to determine a recommended Build Alternative for the project corridor:

- No-Build Alternative (do nothing except as-needed maintenance)
- Enhanced No-Build Alternative (rebuild the freeway as it exists today with minor roadway improvements)
- DEIS Build Alternative (as listed in the DEIS and in Section 4.1.13)

Based on the comparisons of the three alternatives and three modifications to the DEIS Build Alternative listed above, the DEIS Build Alternative Modification One, with refinements, was selected as the recommended Build Alternative.

In summary, the DEIS Build Alternative Modification One includes four through traffic lanes in each direction along l-94 with improved geometrics, provides a two-lane service drive, and provides a median without reserved space. The refinements include a 14 -foot inside shoulder in each direction along the freeway; an 8 -foot shoulder in each direction along the service drives instead of a multi-use lane (based on an agreement between the City of Detroit, the Federal Highway Administration, and the Michigan Department of Transportation) and a three-lane section of the eastbound service drive along I-94 between $\mathrm{M}-10$ and $\mathrm{I}-75$ based on projected traffic volumes. The service drives through the freeway-to-freeway interchanges would be one-lane in the study area to minimize impacts. On August 1, 2003, the Detroit City Council provided concurrence on the Build Alternative.

2.3 COST

The estimated cost of the Build Alternative, in year 2004 dollars, is $\$ 1,181,000,000$ and is based on the preliminary engineering completed to date. The cost estimate assumes a 25 percent contingency. Table 1 (see Volume 2) summarizes the estimated cost. The funding sources for this project have not been identified to date.

2.4 DISTANCE TO ADJACENT INTERCHANGES

Table 2 (see Volume 2) summarizes the spacing between the Build Alternative interchanges. The table provides the distances between ramp termini of each interchange and the crossroads between each interchange.

Within the project area along eastbound I-94, the spacing between ramps ranges from 635 to 3,315 feet (0.12 to 0.63 miles). Along westbound I-94, the spacing between ramps ranges from 960 to 3,390 feet (0.18 to 0.64 miles). Interchange spacing within the project area ranges from 365 to 5,395 feet (0.07 to 1.02 miles). A brief overview of proposed signing is described in Section 5.8.

The Build Alternative would allow for greater decision time for motorists by improving ramp spacing where practical and feasible. In addition, the elimination of exit and entrance ramps on the left side of the freeway would reduce driver confusion and weaving.

3.0 REGIONAL TRAFFIC NEED

This chapter describes the purpose and need for the I-94 Rehabilitation Project, as well as the traffic operations under the existing (year 1995) and future (year 2025) conditions.

3.1 PURPOSE OF THE PROPOSED ACTION

The purpose of the I-94 Rehabilitation Project is to improve the capacity, safety, and condition of the l-94 corridor to support the mobility needs of local and interstate commerce and national and civil defense. The project would also enhance local traffic circulation by separating local traffic from I-94 traffic. The project corridor, a 6.7 -mile segment of I-94 in the City of Detroit, Michigan, is depicted below and in Figure 1 (see Volume 2).

The section of I-94 proposed for rehabilitation was constructed in the late 1940s and early 1950s; it is one of the oldest urban interstate freeways in the country. The project portion of I-94 is aged and requires frequent maintenance. In addition, the geometric configuration of various elements of

I-94 Rehabilitation Project - Traffic Study and Project Limits the corridor is outdated. The current design and high traffic volumes contribute to inadequate capacity, especially during the morning and evening rush hours. The Annual Average Daily Traffic (AADT) in the project area ranges from 120,000 to more than 160,000 vehicles and is expected to grow by more than 35 percent by the year 2025. Due to I-94's link to international border crossings and the growing economy in southeast Michigan, the volume of heavy truck traffic on southeast Michigan interstates is expected to grow three times faster than the passenger vehicle volume. The Federal Highway Department Freight Analysis Framework stated that freight traffic is forecasted to grow at an annual average rate of over 4-percent to the year 2020.

3.2 PROJECT BACKGROUND

Southeast Michigan is an important industrial center between Toronto and Chicago, and I-94 is the primary east-west freeway corridor linking Michigan to Indiana, Illinois, and Wisconsin, and Ontario, Canada. International trade is increasingly important to Michigan's economy. The North American Free Trade Agreement (NAFTA) increased the globalization of Michigan's economy, and thus the importance of I-94. In 1999, the

Detroit area was the nation's top exporting metropolis, selling a total of $\$ 28.0$ billion in merchandise to foreign markets (Metropolitan Area Exports, US Department of Commerce, 1999). The ability of the region and state to compete successfully depends, in part, on the quality of the region's transportation system.

Several studies completed in the last 18 years by the Michigan Department of Transportation (MDOT), the Southeast Michigan Council of Governments (SEMCOG), and the City of Detroit highlighted I-94's critical role as part of the interstate system in southeast Michigan. They include the following reports:

- An Image Renaissance: Detroit I-94 - US 10 Entrance Corridor, Wickens, 1986.
- Greater Detroit Area Freeway Rehabilitation Program Study, Michigan Department of Transportation, 1990.
- 2015 Regional Transportation Plan for Southeast Michigan, Southeast Michigan Council of Governments, 1993.
- Jump-Starting the Motor City - Detroit Empowerment Zone, City of Detroit, 1994.
- A Framework for Action: Recommendations of the Mayor's Land Use Task Force, City of Detroit, 1995.
- 2020 Regional Transportation Plan for Southeast Michigan, Southeast Michigan Council of Governments, 1997.
- 2025 Regional Transportation Plan for Southeast Michigan, Southeast Michigan Council of Governments, 2000

The 2015 Regional Transportation Plan (RTP) for southeast Michigan first identified I-94 as a corridor with capacity, bridge, and pavement deficiencies. The plan recommended that a detailed study of the area be undertaken to find appropriate solutions to the problems evident within the corridor. The Greater Detroit Area Freeway Rehabilitation Program Study concurred with the findings and identified I-94 as the freeway in greatest need for improvement. The other reports support the crucial role of I-94 and the need to make transportation investments within the project area to preserve and enhance the region's economic vitality and quality of life.

The contribution of I-94 to the City of Detroit, the region, and to international trade continues to grow at a rapid rate. NAFTA has resulted in sharp growth in the area's cross-border freight traffic. I-94 connects the Michigan interstate system to Detroit and some of the busiest border crossings in North America:

- The Ambassador Bridge;
- The Detroit-Windsor Tunnel in Detroit; and
- The Blue Water Bridge in Port Huron.

Southeast Michigan's three international crossings carry the majority of the USCanadian border traffic. Approximately 3.3 million commercial vehicles crossed the Ambassador Bridge in 2002. This volume of commercial vehicles exceeded that of any other border crossing in North America. The next busiest crossing at Laredo, Texas, carried approximately one-half that volume of commercial vehicles. The Intermodal Surface Transportation Efficiency Act (ISTEA) designated the I-69 corridor, a north-south and east-west interstate in Michigan, as a "High Priority Corridor." I-94 is a part of that corridor. The designation indicates the corridor's regional importance.

In addition to its importance to international traffic and commerce, I-94 serves as a vital transportation link within the Detroit metropolitan area. I-94, along with I-75 and I-96, form the core of Michigan's interstate highway system, and all intersect within the project area. Traffic from all parts of southeast Michigan use l-94 to access cultural, institutional, and major employment centers in Detroit. The corridor links regional airports in southeast Michigan, including Detroit Metropolitan Wayne County, Willow Run, Detroit City, and Ann Arbor. It is also the primary access to the proposed regional intermodal freight facility in southwest Detroit.

The corridor also has significance to adjoining neighborhoods, where existing activity centers along with ongoing redevelopment efforts drive the need for improved access and mobility. Some of the larger traffic generators that are dependent on l-94 include: Wayne State University (WSU), the New Center area, the General Motors Cadillac Plant, the Detroit Medical Center, Wayne County Community College, the Center for Creative Studies, General Motors World Headquarters, Henry Ford Hospital, the Detroit Institute of Arts, and the Museum of African American History. In addition, the area is experiencing an economic renaissance resulting from numerous redevelopment activities, and the project area includes locations that are candidates for residential, commercial, recreational, and industrial redevelopment.

3.3 DESCRIPTION OF THE PROJECT LIMITS

The project portion of I-94 (also known as the Edsel Ford Freeway) is 6.7 miles long and extends from just east of the I-94/I-96 interchange to the Conner Avenue interchange (Figure 1; see Volume 2). The traffic analysis includes an area of I-94 proposed for future projects and includes the major facilities of I-96 (the Jeffries Freeway), M-10 (the John C. Lodge Freeway), and I-75 (the Chrysler Freeway). Within the short distance of approximately 1.2 miles, I-94 intersects I-96, M-10, and I-75. Reconstruction of the M-10 and I-75 interchanges, which are nearly at the end of their useful life, are a part of this study.

The project corridor is an area of dense urban development with closely spaced interchanges. These interchanges serve numerous major traffic generators and provide access to the City of Detroit's central business district. The project area includes two major freeway-to-freeway interchanges and five interchanges with local streets, for a total of seven interchanges within less than seven miles. l-94 has high traffic volumes (1995 AADT volumes up to 160,000 vehicles) and complex operational characteristics due to the numerous system connections, local access connections, and high-volume destinations.

A 1995 travel time and delay study (Traffic Report Volume I: Existing Conditions) conducted for this project recorded actual measured peak-hour speeds of 30 miles per hour (mph) within the project area at several locations during the peak periods, particularly in the vicinity of the freeway-to-freeway interchanges. The posted speed limit is 55 mph . This substantial difference between the actual speeds and posted speed limit indicates the severity of the traffic congestion. In addition to having an impact on mainline I-94 traffic, the extent of this congestion at the interchanges with I-75, $\mathrm{M}-10$ and I-96 impedes system connectivity and regional freight mobility. The 1940s - 1950s design of this section of I-94 is outdated and still includes such features as left-side entrance and exit ramps as well as deceleration and acceleration lanes that are
inadequate for today's volumes and speeds. The corridor requires an extensive reconfiguration to improve operational flow, reduce congestion, and increase safety.

In 2002, the portion of I-94 east of Conner Avenue to Masonic Boulevard (a distance of approximately 12 miles) underwent a major rehabilitation. The work included:

- Repairing and resurfacing the pavement; and
- Rehabilitating or replacing 51 bridges.

Capacity improvements were not included in the work. West of I-96, the pavement and bridges need repair. A maintenance milling and resurfacing project from Wyoming Avenue to I-96 occurred in Fiscal Year 2003, and several bridges were repaired or replaced. All eastbound trucks over 13.5 feet high are now directed to exit at Wyoming Avenue since numerous overpasses east of Wyoming Avenue provide less than the current standard of 14.75 feet in vertical clearance.

3.3.1 Validation of Project Limits

Federal Highway Administration (FHWA) regulation 23 CFR 771.111 (f) outlines three principles for use in ensuring the meaningful evaluation of alternatives and avoiding commitments to transportation improvements before they are evaluated fully. These principles were used to evaluate the project limits for the I-94 project:

- Logical Termini: The project should connect logical termini and be of sufficient length to address environmental matters on a broad scope.
- Independent Utility: The project should have independent utility or independent significance. That is, the alignment needs to be usable, and it needs to be a reasonable expenditure of funds even if no additional transportation improvements in the area are made.
- Other Improvements: The project should not restrict consideration of alternatives for other reasonably foreseeable transportation improvements.

Adherence to these principles promotes projects of sufficient length to allow consideration of the full range of environmental impacts that are likely to occur.

3.3.1.1 Logical Termini

I-94 from I-96 to Conner Avenue is identified in the statewide and regional plans as the roadway in most need of improvement in Michigan. While many segments of interstate roadway in the state exhibit congestion, deterioration, and safety issues, I-94 from I-96 to Conner Avenue is among the worst in these categories. In addition, this corridor is critical to Michigan's economic well-being, freight movement, and system connectivity. l-94 experiences average measured speeds less than 30 mph in peak periods at some locations. It contains 50 -year-old pavement and bridges nearing the end of their service life. It includes seven closely-spaced interchanges with limited acceleration and deceleration lanes, left-hand entrances and exits, inadequate merging lanes, and high numbers of crashes.

Traffic volumes along l-94 decrease east and west of the project area, reducing congestion in those areas. West of l-96 and east of Conner Avenue, interchanges are
spaced farther apart, and more space is available to place ramps and signing. Interchanges with other state, US, or interstate highways also are farther apart, making system connectivity less critical. In addition, between I-96 and Conner Avenue, major traffic generators draw large volumes of traffic and create a heavy reliance on I-94 for their continued success.

The unique circumstances existing between I-96 and Conner Avenue, together with the system connection to I-96 on the west and the 2002 improvements to I-94 to the east make the l-96 interchange and the Conner interchange the logical termini for this proposed improvement.

3.3.1.2 Independent Utility

I-94 is identified in the MDOT Long-Range Plan 2000-2025 as the Corridor of Highest Significance in Michigan. It needs to be modernized and rehabilitated throughout its length. The section from east of I-96 to east of Conner Avenue exhibits several unique problems and circumstances (congestion, condition, outdated design, safety, and connectivity) which are discussed in this chapter and elsewhere in this document. In addition, the three freeway-to-freeway interchanges within and immediately adjacent to the project area (I-75, M-10 and I-96) elevate the importance of this segment of I-94 as a vital link in the regional freeway system. The unique problems inherent to this segment of I-94 that impede mobility and commerce differentiate it from adjacent segments and other freeways, and must be addressed in addition to the general need to rehabilitate I-94 throughout Michigan. Addressing these specific needs within the proposed project termini improves the performance of I-94 in that location and contributes to the performance of I-94 and the regional freeway system as a whole. The project's usefulness does not depend on other improvements being constructed.

3.3.1.3 Other Improvements

The rehabilitation of I-94 would not change its location, fundamental function, or its connections to other routes. The improvements would match the existing configuration of I-94 at the project termini and would not preclude any future roadway improvements within the corridor. In addition, since the October 2001 report, Improving Transit in Southeast Michigan: A Framework for Action, did not include the l-94 corridor in its recommended 12 -corridor, 259 -mile rapid-transit system, there are no reasonably foreseeable transit corridors along I-94. The continuous service drives would accommodate bus transit and consideration of bus accommodations such as turnouts and shelters for waiting passengers would be considered during design. Coordination with the City of Detroit is ongoing and would continue to ensure that I-94 would be consistent with local road and street improvements. The Build Alternative does not restrict the consideration of alternatives for other reasonably foreseeable transportation improvements.

3.3.2 Conclusion on the Validation of Project Limits

The project limits for the l-94 Rehabilitation Project are considered logical and appropriate due to:

- The recommendation for action in statewide and regional plans;
- The significance of the project area as a linkage in the regional freeway system;
- The unique characteristics and operational issues inherent to this segment of the corridor due to intensification of volumes in the area and an outdated design;
- The extensive reconstruction complete east of Conner Avenue;
- The diminished volume and congestion levels along the corridor west of the I-96 interchange;
- The importance of the project corridor to the regional freight network.

3.4 DESCRIPTION OF THE PROJECT

The Build Alternative would include an additional lane in each direction along I-94 and provide continuous service drives through the I-94 interchanges with M-10 and I-75. Specifically, this alternative would consist of:

- The addition of one general-purpose lane in each direction of I-94 within the project area (the project area is between east of I-96 and the Conner Avenue interchange);
- The redesign and reconstruction of all bridges and ramps within the project area, including the addition of auxiliary, acceleration, and deceleration lanes;
- The elimination of all left-hand exit and entrance ramps;
- Standard shoulders on both the inner and outer lanes of I-94;
- Updated geometric designs for the I-94/M-10 and I-94/I-75 interchanges; and
- One-way continuous service drives with two travel lanes and sidewalks, located parallel to both sides of the I-94 mainline freeway within the project area. A three-lane service drive would be provided along the eastbound I-94 service drive between $\mathrm{M}-10$ and I-75, based on the projected volume of traffic in this area. One-lane service drives would be provided through the freeway-to-freeway interchanges in the study area.
- One-way continuous service drives with two travel lanes and sidewalks, located along M -10 from Pallister/Seward Avenues to Forest

Build Alternative Typical Cross-Section

Avenue and I-75 from Warren Avenue to Clay Avenue. One-lane service drives would be provided through the freeway-to-freeway interchanges in the study area.

The proposed typical section is shown at right and in Figure 2 (see Volume 2).

3.5 NEED FOR THE PROPOSED ACTION

The existing l-94 freeway in the project area was built in the late 1940s and early 1950s and is approaching the end of its service life. The pavement and bridges are in poor condition and require extensive maintenance. The condition of the existing facility drives the need for action.

In addition, other problems must be addressed by any proposed solution. While I-94 was a state-of-the-art freeway when it was built, the configuration of the corridor is outdated and inefficient for modern use. Congestion is pervasive throughout the project area due to high traffic volumes and the deficient design of the corridor. With traffic volumes anticipated to increase by 35% by 2025 , congestion would continue to worsen, further impeding regional mobility. As a key corridor for international trade and regional freight movement, the impact of this growing congestion is far-reaching. Michigan manufacturing businesses increasingly depend on integrated supply chain logistics and just-in-time delivery, making freight mobility within this corridor critical to the State's economy. Furthermore, as a point of connection between four major freeways (I-94, I$96, \mathrm{M}-10$ and I-75), continued congestion within the project corridor would impact not only I-94 traffic, but the connectivity of the broader regional freeway network as well.

Improvements to the corridor are also needed to enhance safety, improve local traffic circulation, and to better provide for non-motorized transportation within the project area. The current spacing of ramps, use of left-hand entrances and exits, and lack of acceleration/deceleration lanes, all play a role in creating safety issues along the corridor. In addition, because of a lack of continuous surface streets, local traffic frequently uses I-94 to complete short trips. The resulting increase in freeway traffic volumes, along with additional weaving movements at entrance and exit ramps, exacerbates congestion and increases crashes. This lack of service drive and local road continuity also has an impact on non-motorized mobility within the project area.

3.5.1 Sufficiency Rating

The condition of I-94 within the project area is described by sufficiency rating scores given to the various segments of $\mathrm{I}-94$ and its interchanges with $\mathrm{M}-10$ and $\mathrm{I}-75$. MDOT produces a sufficiency report, which includes a point system for evaluating and comparing the adequacy of each segment of roadway under state jurisdiction. The sufficiency rating is a combination of points from four categories: number of traffic crashes, roadway capacity, physical condition of the roadway base, and physical condition of the roadway surface. The maximum points for these categories are 30, 30, 15 , and 25, respectively. Table 3 (see Volume 2) shows that a facility in excellent condition has a sufficiency rating between 90 and 100 points.

The MDOT 1998 Sufficiency Rating, Michigan State Trunkline Highways report rated segments along l-94 within the project area as less than 40 . This is the lowest-possible rating in the MDOT Sufficiency Rating Report, and is described as "poor" pavement condition. The 2001 sufficiency rating scores did not improve since no corrective action was taken between the 1998 and 2001 study. Table 4 (see Volume 2) contains the 2001 sufficiency ratings for I-94, M-10, and I-75.
l-94 within the project area was milled and resurfaced in 2002. The project was a shortterm improvement intended to provide an acceptable riding surface until major rehabilitation could be initiated. This improvement is expected to last five to seven years.

3.5.2 Bridge Conditions

Condition ratings for bridge decks, superstructures, and substructures indicate that many of the bridges within the project limits need major repairs. In addition, the bridges on or over l-94 have loading and structural deficiencies and limited vertical clearances (the height of a bridge above the pavement). The vertical clearance at many of the overpass structures is less than the current MDOT minimum standard of 14.75 feet.

SEMCOG's bridge sufficiency ratings indicate that 34 of the project area's 77 bridges are structurally deficient and that 16 of those 34 bridges are functionally obsolete (Status of Bridges in Southeast Michigan, SEMCOG, April 2002). Structural adequacy or deficiency is related to a bridge's ability to carry a given weight or load. Functional adequacy or deficiency is related to a bridge's width or vertical clearance over the waterway, railroad, or other highway being crossed. For structural or functional purposes, all bridges in the project area would need to be replaced to accommodate additional through-traffic lanes and wider shoulders for the mainline and meet the MDOT minimum standard of 14.75 feet.

3.5.3 Traffic Congestion

The Annual Average Daily Traffic (AADT) on I-94 in the study area ranges from 120,000 to more than 160,000 vehicles and is expected to grow by more than 35 percent by the year 2025. This growth does not account for future demand by heavy trucks. Truck traffic has been growing steadily on I-94 at a rate of five to seven percent each year. Current truck traffic ranges from five to ten percent of the total traffic within the project limits.

SEMCOG's 2015, 2020, and 2025 Regional Transportation Plans (RTPs) identified I-94 as capacity-deficient. The number of lanes and geometric configuration of interchanges of I-94 within the project area are insufficient to efficiently carry the number of vehicles that use the facility.

Level of service (LOS) is a qualitative measure describing operational conditions of traffic, generally defined in terms of speed and travel time, freedom to maneuver, traffic interruptions, comfort, convenience, and safety. In other words, level of service describes the degree of congestion, where LOS A represents the best operating conditions and LOS F represents the worst. The following are definitions of operating conditions associated with different service levels:

- LOS A: Free flow; no restrictions on operating speed
- LOS B: Stable flow; few speed restrictions
- LOS C: Stable flow, higher volumes; restricted speed and lane change
- LOS D: Approaching unstable flow; little freedom to maneuver
- LOS E: Unstable flow; lower speed with some stops
- LOS F: Forced flow; low speed with many stops

MDOT considers LOS A through D desirable for Michigan roadways and LOS E is acceptable in urban areas if the occurrence of LOS E is limited to peak hours. I-94 currently operates at LOS E and F within the project limits during peak periods. As traffic volumes increase in the future, the level of service would worsen. The 2025 traffic analysis indicates that the project corridor is predicted to experience widespread congestion in both the AM and PM peak hours if improvements are not implemented. Increased congestion would adversely impact the economy of southeast Michigan by increasing the cost of travel, which is a significant component of business cost. It has been estimated that transportation costs and the related burden of carrying excessive inventory can easily swamp direct labor costs. Both of these major expenses are closely tied to the capacity, speed, and flexibility of the transportation infrastructure. The addition of a through-traffic lane in each direction would increase the capacity of the roadway and improve the level of service.

Although I-94 is currently a six-lane facility (three lanes in each direction), the lack of auxiliary and acceleration and deceleration lanes reduces the functional capacity of the outside lanes. Without acceleration lanes, vehicles enter the facility at a reduced speed and cause through vehicles in the outside lanes to slow down. Vehicles exiting I-94 slow down in the outside through lanes since no separate deceleration lanes exist. Therefore, the outside lanes carry relatively little traffic since through traffic uses the inside lanes to avoid these slowdowns and other potential problems associated with entering and exiting vehicles. Traffic merges and diverges at distances less than what is required by current American Association of State Highway and Transportation Officials (AASHTO) design standards, which provide greater distances for traffic turbulence to subside. The short distance results in weaving problems. The addition of acceleration and deceleration lanes would improve operations of through traffic.

Traffic using the corridor during peak hours, particularly the evening period, operate under congested conditions, resulting in frequent stopping of vehicles. This situation is often made worse by traffic incidents which can block the interstate. Inadequate shoulder widths prevent disabled vehicles with mechanical failure or flat tires to park completely out of the outside driving lane. Vehicles in those lanes must slow to avoid the disabled vehicles. Increasing the width of the shoulders would enable disabled vehicles to park out of the driving lanes and would improve safety conditions for drivers and stranded motorists.

3.5.4 Local Traffic

Local traffic has been found to use l-94 to travel short distances due to the lack of connectivity of local roadways within the corridor. This traffic contributes to congestion along the corridor by increasing the overall mainline volume and the frequency of weaving maneuvers over short distances. The Build Alternative proposes the construction of continuous service drives along I-94 through the M-10 and I-75 interchanges. Continuous service drives would separate local traffic from regional traffic, resulting in reduced local trips on the mainline, less local trips on entrance and exit ramps, increased safety, and improved access to adjacent development.

3.5.5 Safety

Traffic crashes cause property damage, injuries, and loss of life, as well as adding to driver delay and frustration. Tables 5A - 5D (see Volume 2) provide crash data for the $\mathrm{I}-94, \mathrm{M}-10$, and I-75 freeways within the project area, including interchanges adjacent to the project limits. These tables provide the location of each segment, the total and average number of crashes, the number of injury crashes, the injury severity count, and the number of crashes by crash type on that segment for a three-year time frame (1999, 2000, and 2001) by freeway.

Of the 28 freeway segments analyzed along the I-94 freeway, 13 segments have between 50 and 99 crashes, and nine segments have more than 100 crashes during the three-year analysis period within the project area only. The predominant crash types within the 28 segments during the three-year analysis period are rear-end crashes, followed by either sideswipe-same-direction direction or fixed-object crashes. This might indicate that, during congested conditions, vehicles are stopping suddenly and are being hit by the vehicle behind them. Some vehicles might swerve to miss hitting another vehicle and either hit the vehicle in the adjacent lane (sideswipe-same-direction) or hit the barrier wall along the freeway. Within the project area, there were seven fatal crashes during the three-year analysis period; six occurred along segments having more than 100 crashes during the three-year analysis period.

Of the eight freeway segments analyzed along the $M-10$ freeway, six segments have between 50 and 99 crashes and zero segments have more than 100 crashes during the three-year analysis period within the project area only. The predominant crash types within the eight segments during the three-year analysis period are rear-end crashes, followed by either sideswipe-same-direction or fixed-object crashes. There were no fatal crashes within the project area during the three-year analysis period.

Of the eight freeway segments analyzed along the I-75 freeway, three segments have between 50 and 99 crashes and one segment has more than 100 crashes during the three-year analysis period within the project area only. The predominant crash types within the eight segments during the three-year analysis period are rear-end crashes, followed by sideswipe-same-direction crashes. There were two fatal crashes within the project area during the three-year analysis period.

The configuration of many elements of the corridor contribute to the number and severity of traffic crashes. For instance, the current configuration of the $\mathrm{M}-10$ interchange allows for left-hand exits which, when coupled with the close spacing of other interchanges within the project area, encourages vehicles to weave across lanes on I-94 at relatively high speeds. The lack of auxiliary and acceleration lanes cause vehicles to enter the facility at a reduced speed and cause through vehicles in the outside lanes to slow down. Vehicles exiting l-94 slow down in the outside through lanes since no separate deceleration lanes exist. Traffic merges and diverge at distances less than that required by current AASHTO design standards, which provide greater distances for traffic turbulence to subside. The short distances result in weaving problems, contributing to the number of vehicular crashes.

In addition to human and economic losses that result from these crashes, traffic flow is significantly disrupted. According to SEMCOG's 2020 Regional Transportation Plan, more than 40 percent of all congestion in urban areas is due to traffic incidents, which
are predominantly traffic crashes. Traffic management on the interstate system is especially difficult when traffic incidents occur. Traffic along I-94 is often delayed for long periods of time while traffic crashes are investigated and cleared. Since I-94 is used extensively by local and regional traffic and for regional, interstate, and international goods movement, traveler delay and lost productivity caused by traffic crashes can be extensive.

Improvements to the geometric configuration of the l-94 corridor would contribute to the reduction of the number and severity of traffic crashes while at the same time improving the level of service in the study area. The l-94 corridor, including the exit and entrance ramps and the $\mathrm{M}-10$ and I-75 interchanges, would be constructed to meet or exceed current geometric standards where practical and feasible. The addition of auxiliary and acceleration/deceleration lanes would provide motorists a safe area to accelerate to the speed of through traffic when entering the freeway or to slow to a safe speed prior to exiting the freeway. Eliminating left-hand exits would eliminate vehicles traveling at high speeds weaving across the freeway to access a right-hand ramp. The additional travel lane in each direction would increase the capacity of roadway which improves traffic operations. In addition, the provision of 14 foot inside shoulders would provide space for:

- Emergency vehicle access to respond to incidents;
- A refuge area for disabled vehicles;
- An increase in horizontal sight distance;
- Improved capacity by meeting minimum shy-distance offsets: and
- A vehicular recovery area and snow removal/storage space.

3.5.6 Transit, Pedestrians, and Bicyclists

Non-motorized transportation is important to residents in the project area. Twenty-four percent of those responding to a 1995 Citizens' Impact Survey taken in the project area do not own a car, which is consistent with data from the 2000 Census. According to the survey, 16 percent use transit, which makes it an important element in providing mobility to the area's population. Although l-94 is a direct route to downtown Detroit and other important destinations, it is not conducive to bus use. Circuitous surface streets and the lack of continuous service drives are not conducive to bus routes, and can make pedestrian and bicycle trips unnecessarily long.

Pedestrians and bicyclists have no through access adjacent to I-94 because the sidewalks and roadway are discontinuous. Although sidewalks are present along the existing service drives, the sidewalks end where the service drives end. In addition, many of the sidewalks are not compliant with the Americans with Disabilities Act (ADA); the ADA requires lower curbs, ramps, and other features that allow easier access to persons with physical handicaps.

In order to serve the large number of people with no access to automobiles, the Build Alternative would provide sidewalks (at least 6 feet wide) along the service drives, through the interchanges, and on all reconstructed bridges and cross-streets. These proposed continuous sidewalks, together with pedestrian signals at signalized intersections and other pedestrian-friendly features, should improve pedestrian mobility in the project area. Bicyclists also should experience improved mobility with the
continuous sidewalks and the possibility of using the multi-purpose lane and bridges along and across the l-94 corridor.

3.5.7 Economic Setting

Another important element of the l-94 project is how the project is needed to accommodate the area's evolving economic setting. New development is occurring at Wayne State University, the New Center Area, the Cultural Center, the new sports stadiums, the medical complex, and infill residential development in the project area. New residential development and a fuel cell research center are planned or underway immediately adjacent to the project corridor.

The l-94 corridor is exhibiting new economic vitality, and I-94 can contribute to (or detract from) that setting. The City of Detroit needs to encourage positive economic growth and to support the growth that is already occurring. A rehabilitated I-94, with adequate capacity and an improved visual image, would contribute to a positive economic climate that would encourage further economic investment.

3.5.8 /-94 System Connectivity and Continuity

An important function of this section of I-94 is to connect a number of freeways, state highways, international border crossings, and major traffic generators. These connections allow l-94 to provide continuous travel through seamless links between multiple highways.

Within the project limits (or immediately adjacent thereto), I-94 intersects I-96, M-10, I-75, M-53 (Van Dyke Avenue), and M-3 (Gratiot Avenue). It also crosses M-1 (Woodward Avenue) but does not provide direct access to $\mathrm{M}-1$. With numerous routes depending on l-94 to provide links to other routes, its condition and capacity have considerable impact beyond the interstate's own limits. If congestion or repairs to an aging facility prevent drivers from using l-94 to make their connections and continue their travel, they would seek other routes through the local street network or secondary connections. The use of other routes would result in circuitous travel, loss of time, and impacts to other neighborhoods.
I-94 provides access to the southeast Michigan international border crossings, and its condition and capacity affect economic efficiency and the well-being of southeast Michigan's economy. It also connects a number of major traffic generators adding to its effect on the economy.

Wayne State University, Henry Ford Hospital, the Detroit Medical Center Complex, the New Center area, the Cultural District, and the General Motors Cadillac Plant are within the project limits. Other nearby major traffic generators include the two professional sports stadiums and the Detroit central business district. The connections and continuity provided by I-94 to other routes, international border crossings, the Interstate system, and businesses contribute to the success and well-being of the traffic generators mentioned above along with other businesses in the area.

3.6 PROJECT GOALS AND OBJECTIVES

The Interagency Coordination Committee (ICC)—composed of representatives of MDOT, SEMCOG, the Detroit Department of Transportation (DDOT), Wayne County, Macomb County, the Suburban Mobility Authority for Regional Transportation (SMART), the City of Detroit, and the Federal Highway Administration (FHWA)—was established to guide development of the I-94 Rehabilitation Project. Based on an analysis of the need for the project and information collected at various meetings held in the initial stages of the study, the ICC developed four goals for the project. The four goals are described below.

Goal 1, Mobility: Maintain and enhance safe and efficient transportation for passengers and freight on $\mathrm{I}-94$ including the $\mathrm{M}-10$ and $\mathrm{I}-75$ interchanges.

Goal 2, Access and Development: Improve access and enhance the potential for economic development in the I-94 rehabilitation corridor and adjacent areas.

Goal 3, Environment: Maintain and enhance the beneficial social, economic, and environmental effects of the I-94 rehabilitation corridor while minimizing adverse impacts.

Goal 4, Cost-Effectiveness: Develop an efficient transportation system that maximizes return on limited resources, recognizing that benefits include enhancements to accessibility, community cohesion, job development potential, and service to transit users.

4.0 REASONABLE ALTERNATIVES

This chapter describes alternatives considered but eliminated from further consideration, as well as alternatives with elements that are compatible with and may potentially complement the Build Alternative. These alternatives are described in greater detail in the I-94 Rehabilitation Project Draft Environmental Impact Statement (January 2001) and the I-94 Rehabilitation Project Recommended Alternative Analysis report (August 2002).

4.1 ALTERNATIVES ELIMINATED FROM FURTHER CONSIDERATION

After evaluation, some alternatives were eliminated from further consideration because they did not meet the purpose and need of the project or the goals and objectives established for the study. The alternatives and the reasons for eliminating them from further consideration are described in this section.

It should be noted that initial alternatives evaluated for the corridor (described in Sections 4.1.1 - 4.1.4) did not consider reconstruction of the M-10 and I-75 interchanges. Reconstruction of these interchanges was added to subsequent alternatives after it was determined that without improvements, they would continue to severely limit the operation of I-94 and the ability to expand the corridor. The locations of existing bridge piers within the interchanges preclude widening of I-94 without significant reconfiguration or construction of cost-prohibitive fly-over bridges to carry the widened roadway over the interchanges. In addition, the existing left-side ramps at the I-94/M-10 interchange would continue to induce weaving maneuvers that represent a safety issue and reduce the operational efficiency of the roadway. It was therefore determined that improvements to these interchanges must occur in order to fully address the needs identified for this project.

4.1.1 Use of Grand Trunk Western/Conrail Rail Corridor as a Truck Route

Use of the Grand Trunk Western/Conrail rail corridor as a truck route was evaluated early in the study process as an option to reduce truck traffic along I-94, thereby decreasing overall traffic volumes and maneuvers in the corridor. The alternative would involve conversion of the existing rail corridor, which runs parallel to and north of I-94, to a truck-only route with appropriate connections to the regional roadway system. It was anticipated that a set of tracks would be vacated as a result of the consolidation of Grand Trunk Western and Conrail operations. However, this alternative was found not to meet the needs of the proposed project and have questionable feasibility for numerous reasons, including:

- Existing active rail service to industrial users would be lost because of track crossings, configurations, and switching requirements.
- The existing elevation of the railway grade is approximately 12 feet above ground level and would preclude access to local roads.
- In a number of areas, commercial and industrial buildings are located adjacent to rail structures. To access local streets from the proposed roadway, the buildings located adjacent to the rail structures would need to be acquired and removed.
- The proposed new roadway would have to be shifted south to allow for either construction of ramps or lowering the grade of the roadway to cross city streets at grade.
- New right-of-way would have to be acquired, and homes and businesses would be displaced.
- The proposal would involve substantial costs.
- None of the existing 18 railroad bridges is suitable for highway use; each would need to be replaced at a significant cost.
- The vertical clearances for existing railroad structures over Detroit roadways are approximately 12 feet which are substandard. The proposed alternative would require raising the railroad and highway elevations or lowering the crossroads, significantly increasing costs of the alternative.
- Funding of this alternative with federal aid would be uncertain because of the distance from l-94 to the proposed truck route. The truck route would not be a true interstate highway and would not be eligible for federal funding. The distance would make it difficult to justify the facility as an interstate service facility dedicated to truck use.
- High-speed rail service now under consideration between Detroit and Chicago would potentially operate within this railroad right-of-way. Consequently, it was not certain that the tracks and right-of-way would be removed from rail use.

This alternative would add substantial costs to the proposed project and address the need of only one group of I-94 users (trucks). Moving trucks to this facility would provide only partial relief to current traffic congestion on I-94 and would not satisfy the need to reduce traffic congestion.

4.1.2 Reconstruct I-94: Add HOV Lanes without Improvements to the M-10 and I-75 Interchanges

The addition of one high-occupancy vehicle (HOV) lane in each direction on I-94 was considered as a way to add roadway capacity while encouraging ride-sharing as a means to control total vehicle trips in the corridor. The HOV lane would be a substitute for a fourth additional general-purpose lane. In addition to HOV lanes, this alternative would include the redesign of all exit and entrance ramps, as well as calling for the elimination of some ramps. Reconstructed ramps would be relocated to provide sufficient distance between ramps to meet current highway design standards. Acceleration and deceleration lanes also would be included as part of this alternative.

This alternative was considered primarily because of its potential to relieve traffic congestion and thereby improve air quality. Congestion and air pollutants would be reduced by moving more people in fewer vehicles. Fewer vehicles would translate into smoother operating conditions.

A region-wide HOV analysis, Southeast Michigan High-Occupancy Vehicle Feasibility Study (May 1999), was conducted to determine the viability of the concept. Seven counties were included in the study: Wayne, Macomb, Oakland, Monroe, Livingston, Washtenaw, and St. Clair. The I-94 HOV alternative was included in the analysis as part of a larger regional HOV system. To optimize the benefits and to be most effective, the HOV lanes would have to extend beyond the study limits of the project. The analysis found that I-94 did not meet several of the criteria established for candidate HOV
facilities. One important criterion utilized was the number of vehicles per hour forecasted to use the HOV facility. Federal Highway Administration (FHWA) guidelines suggest a minimum threshold of 500 vehicles per hour per lane. The forecast indicated that the I-94 HOV alternative would attract only 300 vehicles per hour.

Due to lack of forecasted use, this alternative would not meet the need to reduce congestion or improve operations or safety. Therefore, the alternative was dropped from further consideration.

4.1.3 Reconstruct I-94: Add Unconventional Service Drives without Improvements to the M-10 and I-75 Interchanges

Under this alternative, a single general-purpose lane in would be added in each direction, along with redesign the ramps, provision of reserve space in the median for future expansion, and construction of continuous service drives adjacent to I-94 without improving the $\mathrm{M}-10$ and $\mathrm{I}-75$ interchanges.

The service drives would be located parallel to l-94 for the length of the project, but would be "unconventional" because they would not be adjacent to l-94 in all locations and would not always be located on both sides of the freeway. In some locations, the service drives would shift to one side of the freeway and become a two-way boulevard. The "boulevard" concept for the service drives would address the City of Detroit's economic development objectives by providing access to redeveloping neighborhoods and business areas. However, as the study progressed, concerns were raised regarding the feasibility of this unconventional service drive concept:

- Access to the freeway would be limited.
- A potential would exist for I-94 traffic to seek alternate routes through the residential neighborhoods, because the service drive would not be adjacent to the interstate.
- Impacts of relocations and neighborhood disruptions required by alignment of the service drives through neighborhoods would result.
- Traffic and noise would increase in neighborhoods through which the alignments of the unconventional service drives would pass.
- Emergency access to l-94 would be poor.
- In the event of an incident on the interstate, all interstate traffic (including heavy trucks) would be forced to use these routes, which would increase noise levels and vibration in adjacent neighborhoods.

As indicated in Section 3.1.6, one of the study goals is to minimize the adverse impacts resulting from implementation of the proposed project. The concerns regarding impacts of this alternative outweighed its benefits. The alternative would not meet the needs of:

- Replacing interchanges; or
- Improving traffic operations and safety on the I-94 mainline.

The concept was eliminated from further consideration.

4.1.4 Reconstruct I-94: Add Lanes and Provide Reserved Space for Future Expansion without Improvements to the M-10 and I-75 Interchanges

This proposed alternative would consist of:

- The addition of a general-purpose lane in each direction;
- Three-lane continuous service drives adjacent to I-94 in each direction;
- The reconstruction of the existing roadway and bridges on I-94; and
- Provision of reserved median space for future use.

The addition of the general-purpose lanes would reduce the level of current and projected traffic congestion on I-94. However, the M-10 and I-75 interchanges would not be improved, which would severely limit the operation of I-94. Without improvements to these interchanges, this alternative could not meet safety, congestion and operational improvement needs, and was eliminated from further consideration.

4.1.5 Reconstruct I-94: Improvements to the M-10 and I-75 Interchanges with Collector-Distributor Roads

This proposed alternative would include the addition of one general-purpose lane in each direction, acceleration/deceleration lanes, continuous service drives, and the reconstruction of the existing roadway and bridges on I-94. It also would include provision of reserved space in the median to accommodate future uses.

Construction of collector-distributor roadways was considered under this alternative to improve operations between the M-10 and I-75 interchanges. A collector-distributor roadway is a facility that collect traffic from the mainline and distribute it to other roads. It is separated from the mainline and allows no access to abutting property. To access an exit ramp, traffic must exit the mainline onto the collector-distributor road prior to the exit ramp and then access the ramp from the collector-distributor road. Similarly, to access the mainline, traffic would use the entrance ramp to access the collectordistributor road that has an entrance onto the mainline. By separating these entering and exiting movement from the mainline, weaving movements are eliminated that reduce the efficiency of the mainline roadway for through traffic flow.

This proposed alternative addresses many of the goals of the study, such as improved mobility and access within the project area. It also would provide added safety by reducing weaving on the mainline. However, construction of collector-distributor roadways would require significant additional right-of-way beyond other alternatives for improving the $\mathrm{M}-10$ and I-75 interchanges without corresponding additional benefits. The alternative was therefore eliminated from further consideration.

4.1.6 Reconstruct I-94: Original Design of Improvements to the M-10 and I-75 Interchanges with Continuous Service Drives

This proposed alternative would consist of the addition of one driving lane in each direction on l-94, acceleration/deceleration lanes, three-lane continuous service drives on each side of I-94, and reconstruction of the pavement, retaining walls, ramps, and bridges on I-94. It also would include provision of reserved space in the median to accommodate future uses. This alternative would include the reconstruction of the $\mathrm{M}-10$
and I-75 interchanges with three-lane, one-way continuous service drives on each side of I-94, M-10, and I-75 to provide connectivity for local traffic to travel through the interchanges. It would remove all left-hand ramps and replace them with right-hand entrances and exit ramps.

The two additional mainline lanes, for a total of four in each direction, would be generaluse. The addition of two driving lanes would reduce current and future congestion on l-94. Acceleration and deceleration lanes would reduce the amount of weaving and improve safety and capacity. The design of I-94 under this alternative would accommodate future expansion of I-94 or transit use within the median space, although transit is not considered for implementation as part of this project.

This alternative would require the acquisition of the Research Park Apartments, a building that houses several hundred residents who would require relocation. The Fourth Street neighborhood also would need to be acquired and its residents relocated. For these reasons, this alternative was eliminated from further consideration. However, many of its design concepts were included in a refined alternative.

4.1.7 Refinement of Design of Improvements to the M-10 and I-75 Interchanges with Continuous Service Drives

The concepts of continuous service drives and reconstructed interchanges were retained in this alternative, but the displacement of the residents of the Research Park Apartments and the Fourth Street neighborhood was avoided through design modifications. However, the Fourth Street neighborhood would be located between the mainline roadway and the new service drive.

The Refined Continuous Service Drives Alternative was further refined to reduce right-ofway acquisition and improve access along the remainder of the project.

This alternative was dropped from further consideration since it did not provide the desired access from M-10 and I-94 to the New Center Area via Milwaukee Avenue and the Wayne State University area via Warren Avenue.

4.1.8 Reconstruct I-94: Original Design of Improvements to the M-10 and I-75 Interchanges with Braided Ramps

This alternative would include reconstruction of the M-10 and I-75 interchanges with braided ramps. Braided ramps reduce the amount of right-of-way needed for improvements by constructing one ramp over the top of another (vertical separation), instead of beside one another (horizontal separation). Continuous service drives on $\mathrm{M}-10$ and I-75 through the I-94 interchanges would not be constructed. This alternative would "braid" the Milwaukee Avenue and $\mathrm{M}-10$ ramps to/from I-94, to the north of I-94, and the Warren Avenue and $\mathrm{M}-10$ ramps to/from I-94 to the south of I-94. On I-75, the Milwaukee Avenue ramps would be braided with the I-75 ramps to/from I-94. The M-10 and I-75 interchanges would both need to be rebuilt with right-hand exit and entrance ramps. This proposed alternative would provide the same improvements on I-94 as described in the previously mentioned alternative: one additional driving lane in each direction, three-lane continuous service drives on I-94, acceleration/deceleration lanes, reconstruction of retaining walls, ramps, and bridges, and reserved median space.

This alternative would require the acquisition of the Research Park Apartments and the Fourth Street neighborhood and the subsequent displacement of residents of both, and was therefore eliminated from further consideration. However, many of its design concepts were included in a refined alternative.

4.1.9 Refined Original Design of Improvements to the M-10 and I-75 Interchanges with Braided Ramps

The concept of braided ramps and reconstructed interchanges was retained for this alternative, and the displacement of Research Park Apartment residents was avoided through design modifications. However, the braided ramps located at the Fourth Street neighborhood remained and would still require the acquisition of the structures in the neighborhood.

This alternative was dropped from further consideration because of its adverse impact to the Fourth Street neighborhood and the lack of continuity of the service drives.

4.1.10 Modifications to Existing Transit Service in the l-94 Corridor

A modification to the existing transit service was considered as an alternative. However, without improvement to the project corridor, the lack of continuity of the service drives would limit the ability to provide convenient routes and bus stops in order to improve bus ridership in the corridor. Furthermore, the Southeast Michigan HOV Study indicated that an HOV lane, which would be available for bus use, is not justified based on anticipated high-occupancy vehicle demand. Therefore, transit by itself could not significantly reduce the level of congestion experienced on l-94 and would not improve aging conditions or aesthetics.

4.1.11 No-Build Alternative

The No-Build Alternative was retained as a benchmark or basis of comparison for the Build Alternative. The No-Build Alternative would maintain I-94 between I-96 and Conner Avenue in its existing configuration, alignment, and location. No changes would be made. Only routine maintenance would occur to the existing facility on an as-needed basis. Bridges would be replaced if physical conditions would warrant replacement. Traffic would remain congested and become more so during maintenance, and safety would not be improved.

This alternative was dropped from further consideration because it does not meet the purpose and need of the proposed project.

4.1.12 Enhanced No-Build Alternative

The Enhanced No-Build Alternative would include minor improvements over the NoBuild Alternative by reconstructing l-94 on the current alignment, with the existing configuration and with limited improvements to shoulders and ramps. It would include construction of acceleration/deceleration lanes, auxiliary lanes, and shoulders. Due to the age and condition of the existing pavement and bridges, the Enhanced No-Build

Alternative would include replacement of bridge structures, ramps, and pavement. The existing service drives would be resurfaced but not extended to make them continuous. This alternative would provide no major changes to the existing design of l-94 and the $\mathrm{M}-10$ and $\mathrm{I}-75$ interchanges. The left-hand exits on the $\mathrm{I}-94 / \mathrm{M}-10$ interchange would be retained. The Enhanced No-Build Alternative would do little to ease congestion. Safety would be marginally improved with the addition of acceleration/deceleration lanes and auxiliary lanes. It would cost less than the Build Alternative but more than the No-Build Alternative.

This alternative was retained initially for further study because it marginally improves safety with the addition of acceleration/deceleration lanes, and auxiliary lanes and results in fewer adverse impacts than the Build Alternative. However, this alternative was later dropped from further consideration because it does not meet one of the project's goals, that of improving mobility. During peak periods, I-94 would operate at a Level of Service E or worse. The condition would worsen as traffic volumes increase as anticipated by more than 35 percent by 2025 . Without eliminating left-hand exits (which cause weaving between the I-96 / M-10 and the M-10 / I-75 interchanges), no significant improvement would be made to safety.

4.1.13 DEIS Build Alternative

The Draft Environmental Impact Statement (DEIS) Build Alternative combines key design elements from both the Refined Continuous Service Drives Alternative (see Section 4.1.7) and the Refined Braided Ramp Alternative (see Section 4.1.9). This proposed alternative is a result of efforts to address concerns expressed at public meetings, as well as City of Detroit concerns regarding neighborhood cohesion and the number of residential, commercial, and industrial impacts. In response, an engineering value planning team was convened to refine and modify the design of the I-94 interchanges with M-10 and I-75.

As a result of the value planning process, significant design enhancements were identified and property and displacement impacts were reduced. The refined design avoids the acquisition of Research Park Apartments and reduces acquisitions in the Fourth Street neighborhood to one residential acquisition and one commercial acquisition. The parking lot that serves the Research Park Apartments would be modified and an additional lot would be constructed to replace parking removed from the existing lot.

This alternative was eliminated from further consideration because, when compared to the subsequent modifications to the DEIS Build Alternative (see Sections 4.1.14 and 4.1.15), it would require more right-of-way without corresponding additional benefits.

4.1.14 DEIS Build Alternative: Modification Two

Comments on the DEIS indicated that a narrower cross-section was desired to further reduce impacts on neighboring properties and reduce displacements. The 2025 traffic analyses indicated that in most locations, the three-lane service drives could be reduced to two lanes and still have adequate capacity, without causing an unacceptable reduction in the level of service.

The DEIS Build Alternative: Modification Two incorporates many design elements of the DEIS Build Alternative, but would include reduced-width service drives with two 11-foot through lanes with an 8-foot lane that could be used for parking or as a shoulder (a 10foot reduction in width on each side). This modification would retain the 30 -foot reserved space in the l-94 median.

The DEIS Build Alternative: Modification Two was eliminated from further consideration because, when compared to Modification Three to the DEIS Build Alternative (see Section 4.1.15), it would require more right-of-way without corresponding additional benefits.

4.1.15 DEIS Build Alternative: Modification Three

The SEMCOG General Assembly adopted Improving Transit in Southeast Michigan: A Framework for Action (October 2001). This report indicated that while transit was considered for the l-94 corridor, it was not ultimately included as part of the recommended transit system. Based on this finding, the need for the reserved space in the median was re-evaluated.

Modification Three to the DEIS Build Alternative was developed to evaluate the potential reduction in right-of-way requirements and impacts by eliminating the reserved median space. The alternative retained the three-lane service drives on each side of the I-94 mainline but eliminated the reserved space in the median, reducing the median width to approximately 6 to 10 feet. This modification requires less additional property than the DEIS Build Alternative.

The DEIS Build Alternative: Modification Three was eliminated from further consideration because the three-lane service drives (and associated right-of-way requirements) were found not to be warranted based on 2025 traffic forecasts.

4.1.16 Light Rail in the I-94 Median

Deployment of light rail transit service in the median of I-94 was originally proposed as a stand-alone alternative, but by itself did not meet the purpose and need of the project or the goals and objectives of the study and was eliminated. The Light Rail Transit Alternative would involve construction of facilities in the median of I-94. Sufficient distances between stations would be required to reduce the number of stops and travel time for users. The design would be determined at a later time, but would be similar systems operating within freeway right-of-way, such as several lines operated by the Chicago Transit Authority. A light-rail vehicle could operate on tracks as a single vehicle or in short trains in the median of I-94. This alternative was proposed as a candidate for the reserved space in the median of the DEIS Build Alternative.

The alternative was eliminated from further consideration as a substitute for a fourth additional lane because the estimated 20 -year ridership forecasts would not justify the major investment necessary to build and maintain rail operations. The Southeast Michigan Regional Rail Study (DeLeuw, 1997) identified the Ann Arbor-Detroit corridor as one of the three most promising rail corridors in southeast Michigan. I-94 is part of that corridor, but is east of this study area.

The rail study projected a daily passenger boarding of approximately 6,681 for the year 2015 for the Ann Arbor-Detroit corridor. The passenger estimate is less than two percent of the total person-trips in the portion of I-94 currently under study. The estimated ridership would not significantly reduce current and future congestion on I-94. To be effective, rail on I-94 would have to extend a greater distance than the project length and include origins and destinations outside of the project limits. A system-wide study would be necessary to identify the optimal distance and origins and destinations.

The recommended Build Alternative does not include the reserved space within the I-94 median; therefore, light rail within the I-94 median no longer would be feasible. Although the Downtown-Airport Rail Study (Parsons Brinckerhoff 2001) indicated that rail service between downtown Detroit and Detroit Metropolitan Airport was feasible, light rail would not be proposed for the I-94 median (within the project area).

4.2 TRANSPORTATION MEASURES COMPATIBLE WITH THE BUILD ALTERNATIVE

This section describes transportation actions that were originally proposed as standalone alternatives but, by themselves, did not meet the purpose and need of the project or the goals and objectives of the study and were eliminated. These transportation actions depend upon the recommended Build Alternative to facilitate their usefulness and are complementary to it. In conjunction with the Build Alternative, they would enhance the efficiency of I-94, the M-10 and I-75 interchanges, and the transportation system within the project area.

4.2.1 Transportation Systems Management (TSM)

Transportation Systems Management (TSM) refers to activities or strategies that improve the operational efficiency of transportation systems. TSM strategies are typically less capital-intensive enhancements designed to increase the capacity of the freeway through operational improvements. Common strategies include deployment of Intelligent Transportation System (ITS) technologies, and coordinated incident management programs, often coupled with freeway courtesy patrol. These strategies help to better inform travelers, and to provide prompt assistance during a breakdown or crash event, thereby expediting clearing of the roadway. TSM strategies could be implemented with and compliment the Build Alternative.

The Michigan Department of Transportation has extensive experience in the use of ITS, incident management and freeway courtesy patrol to improve freeway operations. ITS technologies, such as variable message signs, vehicle detectors and surveillance cameras are deployed throughout the project area, all controlled by operators at the Michigan Intelligent Transportation System Center (MITSC). State Police dispatchers are co-located with MITSC operators, thereby enabling coordinated dispatch of emergency vehicles after detection of an event. In addition, MDOT operates a regional freeway courtesy patrol program that includes patrol of the project area.

The Build Alternative would allow for the installation of improved communication technologies to replace the existing aged communications infrastructure in the corridor. Enhanced communications capabilities would enable deployment of additional ITS technologies or improved coverage with existing technologies to assist in better
surveillance and operation within the corridor. Any improvements to the ITS infrastructure would be coordinated with the National ITS Architecture, a system to ensure national system compatibility.

4.2.2 Transit

Improved transit service throughout the region is a key component of SEMCOG's 2025 Regional Transportation Plan (RTP), adopted in June 2000. SEMCOG is the metropolitan planning organization responsible for developing the multi-modal regional transportation plan. The 2025 RTP calls for investing approximately six billion dollars in transit, primarily to maintain existing service in southeast Michigan. However, the plan recognizes and advocates for larger investments in transit to meet current and future transit needs that would be tied to the development of the regional transit vision.

Improvement to transit was considered originally as a stand-alone alternative for the I-94 Rehabilitation Project but was eliminated because transit service improvements alone would not meet the purpose and need of the study. Transit enhancements within the corridor could not attract enough passengers to significantly reduce existing and projected congestion. Also, it would not improve the existing aged pavement and bridges that would still need to be replaced, and would have a minimal impact on safety. Transit enhancements could however play a supplementary role to relieve congestion and improve air quality. Therefore, it was retained as an alternative compatible with the Build Alternative.

Three transit options could be implemented within the I-94 project area along with the Build Alternative:

- Modifications to existing transit service;
- Bus Rapid Transit (BRT); and
- Regional transit initiatives.

4.2.2.1 Existing Transit Service

The Detroit Department of Transportation (DDOT) provides bus service throughout the City of Detroit, with limited service to outlying suburban areas. The Suburban Mobility Authority for Regional Transportation (SMART) is the primary transit service provider for the suburban Detroit region, with a network of routes throughout the suburban area, along with feeder routes along major regional corridors to and from the central business district of Detroit. Neither transit provider currently uses l-94, although many of the routes cross or run parallel to I-94.

The Build Alternative provides an opportunity to improve existing transit service in the I-94 project area. With the advent of continuous service drives, transit operators would have better routing options along the l-94 corridor given the improved surface roadway connectivity.

Improvements to the I-94 corridor could also encourage the development of transit service hubs. DDOT is reviewing the possibility of developing transit hubs in Detroit along I-94 at the Gratiot Avenue, Woodward Avenue, and Wyoming Avenue interchanges. In addition, future facilities east of Detroit at I-696 and at 23 Mile Road, as
well as west of the city at M-39 and I-275, are being considered. With reduced congestion along l-94, transfer times between these hubs using express bus service along the corridor could be reduced and travel options increased, two important factors in promoting the use of transit services.

4.2.2.2 Bus Rapid Transit (BRT)

Early in the I-94 Rehabilitation Project study, exclusive bus facilities to accommodate Bus Rapid Transit (BRT) operations were proposed as either a substitute for a fourth traffic lane or as a candidate for the reserved space in the median. In the HOV study, the estimates of future ridership did not justify an exclusive bus lane at this time. Therefore, this alternative was dropped from consideration as a substitute for an additional driving lane or the reserved space in the median.

A travel information survey was conducted in the fall of 1995 to supplement existing travel information. The survey indicated that 46 percent of I-94 trips had a Detroit destination. Less than 13 percent of all trips using l-94 during peak periods began and terminated in Detroit. Because the study area is entirely within the City of Detroit, a BRT alternative alone would serve only those who have an origin and destination within the study area limits. It is possible that commuters from outside the City of Detroit might use the facility if convenient park-and-ride facilities were provided.

Based on results from the travel information survey, less than two percent of commuters were likely to use transit service on I-94. Therefore, this alternative would not have an appreciable impact on current and future congestion.

4.2.2.3 Regional Transit Initiatives

Several Transit Initiatives that would impact the I-94 corridor have recently been completed. The I-94 Rehabilitation Project, as it is currently proposed, would accommodate the results of the Regional Transit Initiatives. Foremost among these initiatives is the Southeast Michigan Transit Vision. The project laid out a transit vision and plan to integrate all transit activities and expand transit service in southeast Michigan.

SEMCOG is the appropriate forum for the discussion of regional transit issues and how they relate to the highway network. SEMCOG is responsible for developing the Regional Transportation Plan (RTP)—a multi-modal plan for southeast Michigan. The RTP focuses on the transit needs and the infrastructure necessary to service these needs in the most efficient manner. Some broader issues related to transit include identifying and servicing major destinations and attractions, spatial distribution of the regional population, and other specific demographic concerns such as the aging population. These concerns would be addressed most adequately by the RTP.

Regional transit initiatives are seen as compatible with the I-94 Rehabilitation Project. The Build Alternative would accommodate transit enhancements as determined by the regional transit plan and the operating agencies.

Transit studies that have either started or have been completed recently in the City of Detroit include:

- Improving Transit in Southeast Michigan: A Framework for Action. In October 2001, SEMCOG released the results of the regional transit study for southeast Michigan. The proposed transit corridors included Woodward, Gratiot, and Van Dyke Avenues. I-94 was not included as a recommended transit corridor. SEMCOG since has amended the Transportation Improvement Program to include these corridors.
- Downtown Detroit to Metro Airport Rail Study, Phase 1, 2, and Final Reports, June 2001: The results of this study indicated that rail service between Downtown and Metro Airport was feasible. This study is currently in the alternative analyses phase and is anticipated to be completed in 2005.
- The Woodward Transit Alternatives Study: The initiative was started in 1999 to identify a feasible transit alternative along Woodward Avenue within the City of Detroit. The study identified BRT and light rail as the two most appropriate transit options for the Woodward corridor. No funding has been allocated at this time for further study.
- Bus Rapid Transit Options Study for Southeast Michigan: This study, sponsored by the Metropolitan Affairs Coalition (MAC), assessed the feasibility of BRT in southeast Michigan and identified potential BRT corridors. The results of this study have been included as part of SEMCOG's regional Transit Vision Plan.

5.0 TRAFFIC OPERATIONS ANALYSIS

This chapter describes the freeway and surface street traffic operations for the existing and future conditions.

5.1 DESIGN YEAR TRAFFIC PROJECTIONS

Design year traffic projections were prepared using the Southeast Michigan Council of Governments' (SEMCOG) 2025 TRANPLAN Model, a computer model for forecasting regional travel demand based on population and employment forecasts, regional tripmaking characteristics and observed travel choices. The model is based on used the regional transportation network adopted by SEMCOG, and covers the seven-county SEMCOG region, including Livingston, Macomb, Monroe, Oakland, St. Clair, Washtenaw, and Wayne counties, as well as accounting for trips to Windsor, Ontario, and Sarnia, Ontario. The future year model incorporates projects identified in SEMCOG's Transportation Improvement Program (TIP). Trips are generated by the model from approximately 1,500 traffic analysis zones within the region, grouped to form origin-destination pairs, and allocated trips to the network. The resulting traffic estimates represent a forecast of likely future travel demand and its impact upon the transportation system.

For this analysis, the model was extended in several areas to provide the functionality and level of detail required for this study. The enhancement and application of the SEMCOG regional travel forecasting model for use in this study is described in a separate document, I-94 Rehabilitation Project: Travel Forecasting Methodology Report (January 1997). The report describes the overall structure of the model, the basis and methods employed to extend the model, the application of the model in this study, and the results of the modeling process.

It should be noted that the limited definition of the model network at the local street level has an impact on forecasting of local street volumes within the project corridor. Without sufficient detail of nearby roadway linkages, the model will tend to over-predict travel demand on the adjacent major roadways. Therefore, in some cases, demand forecasted for surface street intersections may be overstated and not representative of reasonable growth assumptions.

5.2 TRAFFIC ANALYSIS METHODOLOGY

The evaluation of freeway and surface street operations was conducted with the Highway Capacity Software (HCS) 2000. HCS 2000 is an electronic implementation of the procedures outlined in the 2000 Highway Capacity Manual (HCM). The HCM is developed and revised under the direction of the Transportation Research Board (TRB) Committee on Highway Capacity and Quality of Service. The Federal Highway Administration (FHWA) has provided guidance in the software's development. The HCM is a resource for transportation engineers and planners, and it represents an assembly of state-of-the-art techniques for estimating capacity and determining level of service.

The HCM is recognized nationally by state departments of transportation and by the Federal Highway Administration. It is the standard method for analyzing traffic operations on road facilities.

The freeway and surface street analyses were performed for the AM and PM peak hours of the day. Peak hour analyses provide a worst-case scenario, as they generally represent the highest volumes experienced throughout the day.

In addition to empirical analyses, a travel time and delay study was conducted as part of the existing conditions analysis to better determine current operating conditions within the study area. The study involved recording of actual travel time and delay data in the field during peak periods using pilot vehicles.

5.3 PEAK HOUR FREEWAY VOLUMES

This section describes where the existing and future freeway volumes were obtained.

5.3.1 Existing Conditions Freeway Volumes

The methodology and sources for obtaining Existing Conditions traffic volumes are described in Section 3.2.1.1. Existing traffic volumes on I-94 are also presented in Traffic Report, Volume 1: Existing Conditions (February 1996). As stated previously, current traffic counts would not reflect an accurate condition, based on continual construction projects within and around the project area since 1995. This construction has resulted in numerous detours; therefore, the 1995 data was determined to be the best representation of the current traffic condition and was not updated to the year 2000. The AM peak hour, PM peak hour, and Average Daily Traffic (ADT) volumes for the 1995 Existing Conditions are provided in Figures 5A - 5N, 6A - 6N, 7A -7N, and 8A 8 C .

5.3.2 No-Build Alternative Freeway Volumes

The methodology for obtaining 2025 No-Build Alternative volumes is presented in Section 3.2.1.2. The AM peak hour, PM peak hour, and ADT volumes for the 2025 NoBuild Alternative are provided in Figures 9A - 9N, 10A - 10N, 11A - 11N, and 12A 12C, and are included in Traffic Report, Volume 3: Simulation of Year 2025 Conditions (August, 2002).

5.3.3 Build Alternative Freeway Volumes

Similar to the No-Build Alternative, traffic forecasts for the Build Alternative were obtained using the 2025 SEMCOG TRANPLAN model. The model network was modified to reflect roadway network improvements proposed as part of the Build Alternative, including the addition of a travel lane in each direction between I-96 and Conner Avenue, reconstruction of the interchanges with $\mathrm{M}-10$ and $\mathrm{I}-75$, and other proposed ramp and service drive modifications. Socioeconomic information used for modeling the No-Build Alternative was retained for this analysis.

Forecasted AM and PM peak hour ramp volumes obtained from the model were compared with 1995 counts and forecasted 2025 No-Build ramp volumes to assess the validity of the forecast. In cases where ramp volumes varied drastically from the 1995 counts and 2025 No-Build forecast, a select link analysis was conducted to better understand the anticipated origins and destinations of the ramp traffic. The ramp
analyses were conducted for both the No-Build and Build Alternatives in order to determine where traffic was expected to shift from. More than 20 select link analyses were conducted for the ramps within the project area.

The select link analyses showed that utilization of I-94, and consequently the on- and off-ramps that serve it, is expected to increase under the Build Alternative because of reduced congestion and increased capacity in the corridor. This was particularly true for westbound ramps during the AM peak hour and eastbound ramps during PM peak hour. Under the 2025 No-Build Alternative, vehicles are expected to experienced heavy congestion in the westbound direction during the AM peak hour and in the eastbound direction during the PM peak hour, and are likely to avoid use of I-94 altogether. Under the Build Alternative, the increased capacity and decreased congestion would make I-94 a more attractive route choice, thus increasing ramp volumes to access it. Due to this shift of traffic, entrance ramp volumes increased and the exit ramp volumes decreased overall in the heaviest direction of travel during each peak hour.

In addition to these anticipated changes in traffic patterns due to operational and capacity improvements within the corridor, some shifting of traffic volumes would occur as a result of changes in access that are planned as part of the Build Alternative (see Section 2.1.2). The following describes notable changes in traffic patterns anticipated due to planned access modifications:

French Road Access

Due to the close proximity of the French Road interchange to the Gratiot Avenue and Conner Avenue interchanges, the French Road interchange would be removed under the Build Alternative. As a result, vehicles that once used the French Road interchange are forecasted to use either the Gratiot Avenue or Conner Avenue interchange, and the service drives that connect them. Comparison of the No-Build Alternative and Build Alternative models indicates an increase in the AM and PM peak hour volumes at the Gratiot Avenue and Conner Avenue interchanges in the Build Alternative as expected based on this access modification.

New Center Area Access

Currently, access from I-94 to the New Center Area (in the northeast quadrant of the I-94/M-10 interchange) is primarily provided via northbound $\mathrm{M}-10$ to the Milwaukee Avenue/West Grand Boulevard exit ramp. Under the Build Alternative, this ramp will be relocated south of I-94, meaning I-94 traffic will no longer be able to access the ramp from northbound $\mathrm{M}-10$ and must instead divert to other locations to access this area. The following are the most likely routing patterns from I-94 to the New Center Area based on shortest distance and modeled volume changes:

- Eastbound I-94 to the Trumbull Avenue exit
- Westbound I-94 to Beaubien Street exit

Midtown Area Access

Due to design and interchange spacing requirements, access to the Midtown Area (including Wayne State University, the Detroit Medical Center and the city's Cultural Center) from I-94 would be modified under the Build Alternative. Currently, access to
the area (located south of I-94 between $\mathrm{M}-10$ and $\mathrm{I}-75$) from $\mathrm{I}-94$ is provided primarily via exits off of $\mathrm{M}-10$ and $\mathrm{I}-75$. However, under the Build Alternative, the southbound $\mathrm{M}-10$ ramp to Forest Avenue and the southbound I-75 ramp to Warren Avenue would be relocated north of I-94, meaning the following movements would no longer be possible:

- Eastbound or westbound I-94 to southbound M-10 to the Forest/Warren Exit
- Eastbound or westbound I-94 to southbound I-75 to the Warren Avenue Exit

The following summarizes potential alternate routes for access between I-94 and the Midtown Area:

Access FROM I-94:

(FROM Eastbound I-94):

- EB I-94 to Trumbull Avenue Exit
- EB I-94 to Brush Street Exit
- EB I-94 to SB M-10 to Temple/Elm Exit
(FROM Westbound I-94):
- WB I-94 to Beaubien Street Exit
- WB I-94 to SB I-75 to Mack Ave. Exit

Access TO I-94:

(TO Eastbound I-94):

- EB I-94 Service Drive to Chene Street On-Ramp to EB I-94
- Temple/Elm On-Ramp to NB M-10 to EB I-94
- Mack Street On-Ramp to NB I-75 to EB I-94
(TO Westbound I-94):
- Brush Street On-Ramp to WB I-94
- Temple/Elm On-Ramp to NB M-10 to WB I-94
- Mack Avenue On-Ramp to NB I-75 to WB I-94

The AM peak hour, PM peak hour, and ADT volumes for the 2025 Build Alternative are in Figures 15A - 15N, 16A - 16N, 17A - 17N, and 18A - 18C. Anticipated 2025 traffic volumes are also presented in Traffic Report, Volume 3: Simulation of Year 2025 Conditions (August 2002).

5.4 PEAK HOUR FREEWAY LEVEL OF SERVICE

Level of service (LOS) is a qualitative measure describing operational conditions of traffic, generally defined in terms of:

- Speed and travel time;
- Freedom to maneuver;
- Traffic interruptions;
- Comfort;
- Convenience; and
- Safety.

Existing (1995) freeway conditions were analyzed using the 1994 Highway Capacity Manual (HCM)-the most current version available at that time. In 2000, prior to
conducting the analysis of 2025 conditions, a new version of the HCM was released. Therefore, the 2025 No-Build and Build alternatives were analyzed using the 2000 HCM.

Density is the parameter used to define level of service for freeway operations. The relationship between density and level of service as defined in the 1994 Highway Capacity Manual is shown in Table 6 (see Volume 2), which was utilized for the existing conditions analysis. The relationship between density and level of service as defined in the 2000 Highway Capacity Manual is shown in Table 7 (see Volume 2), which was utilized for the 2025 analysis.

Figures 13A-13F, Figures 14A - 14F, and Figures 19A - 19F illustrate the $A M$ and PM peak hour level of service results for I-94, I-96, M-10, and I-75 for the 1995 Existing Conditions, 2025 No-Build Alternative, and 2025 Build Alternative, respectively. These figures can be found in Volume 2. Tables 8A - 8D, 9A - 9D, and 10A - 10D summarize the HCM analysis type (basic freeway segment, ramp junction, merge or diverge, or weave area analyses), density, LOS, and volume-to-capacity (V/C) ratio for each element evaluated. In cases where a segment under analysis can be characterized as more than one segment type (for instance, a segment that is both a ramp merge and a ramp diverge due to close ramp spacing), both analyses were completed and the worstcase results reported.

Typically, LOS E is representative of freeway conditions at capacity, where operations are volatile because there are virtually no usable gaps in the traffic stream. LOS F is indicative of breakdown conditions, where flow begins to decrease as demand increases. As a result, a freeway segment could be operating at a LOS E while the volume to capacity ratio is over 1.0. This can be due to freeway exit ramps upstream of the segment or slight variations in the capacity of the freeway in certain segments.

The following sections describe the level of service results.

5.4.1 Existing Conditions Freeway Level of Service

Under 1995 Existing Conditions, the majority of the project area operates at acceptable levels of service during both peak hours, with some exceptions. During the AM peak hour, eastbound I-94 operates at LOS E or better throughout the project corridor. Westbound I-94 operates primarily at LOS E or better, with some exceptions as noted. M-10 and I-75 operate at a LOS E or better, except for one segment on southbound I-75.

During the PM peak hour, eastbound and westbound I-94 operate primarily at LOS E, with

Highway	Section of Highway
Westbound I-94	Southbound Conner Avenue entrance ramp to the Chene Street entrance ramp
Westbound I-94	John R Avenue entrance ramp to the M-10 exit ramp
Southbound I-75	Clay Avenue entrance ramp to the I-94 exit ramp

Locations Operating at Level of Service F 1995 Existing Conditions - AM Peak Hour

Highway	Section of Highway
Eastbound I-94	M-10 entrance ramp to the John R Avenue exit ramp
Westbound I-94	Beaubien Street exit ramp to the Linwood Avenue exit ramp
Southbound I-75	Clay Avenue entrance ramp to the I-94 exit ramp

Locations Operating at Level of Service F 1995 Existing Conditions - PM Peak Hour

two segments operating at LOS F as noted. M-10 and I-75 operate at a LOS E or better, except for one segment of southbound I-75 segment.

It should be noted that the level of service results obtained from HCM analysis in some cases contradict the findings of the travel time and delay study conducted in 1995. As indicated in the travel time and delay study, the majority of the l-94 corridor, particularly upstream of the $\mathrm{I}-96, \mathrm{M}-10$ and $\mathrm{I}-75$ interchanges, operates under congested conditions, with speeds of less than 40 miles per hour, throughout both peak periods.

The AM and PM peak hour freeway level of service results for the 1995 Existing Conditions are provided in Figures 13A - 13F (see Volume 2).

As shown in Tables 8A - 8D (see Volume 2), none of the I-94, M-10, or I-75 freeway segments within the project area have a volume to capacity (V/C) ratio greater than or equal to 1.00 under the Existing Conditions.

5.4.2 No-Build Alternative Freeway Level of Service

Under 2025 No-Build Alternative conditions, the majority of the I-94 corridor is anticipated to operate at LOS F during both peak periods. During the AM peak hour the entire corridor is expected to operate under severely congested (LOS F) conditions in the westbound direction. In the eastbound direction, LOS F operating conditions are expected generally between the I-96 and I-75 interchanges, where traffic volumes and weaving maneuvers are the highest. No segments of $\mathrm{M}-10$ are expected to perform at LOS F during the AM peak hour.

During the PM peak hour, the majority of the I-94 project corridor in both directions is anticipated to experience LOS F operating conditions by 2025. In addition, both directions of 1-75 between Clay Avenue and I-94 are expected to perform at LOS F. No segments of M-10 are expected to perform at LOS F during the PM peak hour.

Highway	Section of Highway
Eastbound I-94	Eastbound I-96 entrance ramp to the M-10 exit ramp
Eastbound I-94	M-10 entrance ramp to the I-75 exit ramp
Westbound I-94	Conner Avenue exit ramp to the I-96 exit ramp (entire length of corridor)
Northbound I-75	I-94 entrance ramp to the Clay Avenue exit ramp

Locations Anticipated to Operate at Level of Service F 2025 No-Build Alternative - AM Peak Hour

Highway	Section of Highway
Eastbound I-94	Eastbound I-96 entrance ramp to the I-75 exit ramp
Eastbound I-94	Russell Street exit ramp to the Gratiot Avenue exit ramp
Eastbound I-94	Gratiot Avenue entrance ramp to the Conner Avenue entrance ramp
Westbound I-94	French Road entrance ramp to the Gratiot Avenue entrance ramp
Westbound I-94	Gratiot Avenue entrance ramp to the Van Dyke Avenue exit ramp
Westbound I-94	Van Dyke Avenue entrance ramp to the Chene Street entrance ramp
Westbound I-94	I-75 exit ramp to the M-10 entrance ramp
Westbound I-94	Trumbull Avenue exit ramp to the I-96 exit ramp
Northbound I-75	I-94 entrance ramp to the Clay Avenue exit ramp
Southbound I-75	Clay Avenue exit ramp to the Warren Avenue exit ramp

Locations Anticipated to Operate at Level of Service F 2025 No-Build Alternative - PM Peak Hour

The AM and PM peak hour freeway level of service results for the 2025 No-Build Alternative are provided in Figures 14A - 14F (see Volume 2). Figures 9A - 9N and Figures 10A - 10N illustrate the 2025 No-Build Alternative volumes, and indicate results for all HCS analyses performed, as well as the type of HCS analysis performed (e.g., ramp merge, ramp diverge, freeway segment, or weave).

As indicated in Tables 9A - 9D (see Volume 2), several I-94 freeway segments are expected to have a volume-to-capacity ratio greater than or equal to 1.00 during one or both peak hours. During the AM peak hour, volume is expected to exceed capacity along the majority of eastbound I-94 between I-96 and I-75, and along nearly the entire corridor in the westbound direction. In addition, a segment of $\mathrm{M}-10$ between I-94 and Milwaukee Avenue is anticipated to have a V/C of greater than 1.0 during the AM peak hour.

Similarly, during the PM peak hour, nearly the entire I-94 project corridor is expected to experience V/C of greater than 1.0 in the eastbound direction, with over-capacity conditions in the westbound direction primarily between the I-96 and $\mathrm{M}-10$ interchanges. None of the I-75 freeway segments within the project area are expected to have a V/C ratio greater than or equal to 1.00 during either the AM or PM peak hour.

Highway	Section of Highway
Eastbound I-94	Eastbound I-96 entrance ramp to the M-10 exit ramp
Eastbound I-94	M-10 entrance ramp to John R Avenue exit ramp
Westbound I-94	Northbound Conner Avenue entrance ramp to the Gratiot Avenue exit ramp
Westbound I-94	Gratiot Avenue entrance ramp to the Beaubien Street exit ramp
Westbound I-94	I-75 entrance ramp to the M-10 exit ramp
Westbound I-94	M-10 entrance ramp to the I-96 exit ramp
Northbound M-10	I-94 entrance ramp to the Milwaukee Avenue exit ramp

Locations with Volume/Capacity (V/C) Ratios > 1.0 2025 No-Build Alternative - AM Peak Hour

Highway	Section of Highway
Eastbound I-94	Eastbound I-96 entrance ramp to the M-10 exit ramp
Eastbound I-94	M-10 entrance ramp to the I-75 exit ramp
Eastbound I-94	Chene Street entrance ramp to the MI. Elliott Street exit ramp
Eastbound I-94	MI. Elliott Street entrance ramp to the Gratiot Avenue exit ramp
Eastbound I-94	Gratiot Avenue entrance ramp to the Conner Avenue exit ramp
Westbound I-94	Van Dyke Avenue entrance ramp to the Chene Street entrance ramp
Westbound I-94	I-75 exit ramp to the M-10 entrance ramp
Westbound I-94	M-10 entrance ramp to the I-96 exit ramp
Northbound M-10	I-94 entrance ramp to the Milwaukee Avenue exit ramp

Locations with Volume/Capacity (V/C) Ratios > 1.0 2025 No-Build Alternative - PM Peak Hour

5.4.3 Build Alternative Freeway Level of Service

The HCS analysis of year 2025 conditions under the Build Alternative indicates that improvements to the corridor would restore operating conditions to LOS D throughout a majority of the project area, with some segments expected to operate at LOS E (considered acceptable for urban areas). Most notably, all segments of l-94 between the I-96 and I-75 interchanges are anticipated to perform at LOS E or better. This
forecasted improvement is attributable to increased capacity and reduced weaving movements within this confined segment of the corridor that is expected to experience the worst congestion under the No-Build Alternative.

HCS analysis does indicate that some segments of project area freeways are anticipated to perform at LOS F under the 2025 Build Alternative. During the AM peak hour, two segments of westbound I-94 were shown to perform at LOS F. These two segments, both classified as basic freeway segments, are expected to have hourly traffic flow rates that exceed the maximum flow rate threshold based on the 2000 Highway Capacity Manual (2,350 vehicles per hour per lane at 65 mph free-flow speed). Based on HCS analysis, these freeway segments are considered to operate at LOS F,. However, an analysis of the corridor conducted in CORSIM found both segments to operate at LOS E during the AM peak hour as a result of a metering of traffic at upstream locations. Results of the CORSIM analysis can be found in Traffic Report, Volume 3: Simulation of Year 2025 Conditions.

During both the AM and PM peak hours, several segments of I-75 are expected to operate at LOS F under the 2025 Build Alternative. This decrease in

Highway	Section of Highway
Westbound I-94	Mt. Elliott Avenue exit ramp to the Mt. Elliott entrance ramp*
Westbound I-94	Chene Street exit ramp to the Chene Street entrance ramp*
Northbound I-75	I-94 exit ramp to the westbound I-94 entrance ramp
Northbound I-75	Eastbound I-94 entrance ramp to the Clay Avenue entrance ramp

*Note: Forecasted flow rate exceeds maximum program threshold. Segment is expected to perform at LOS E based on CORSIM analysis.

Locations Anticipated to Operate at Level of Service F 2025 Build Alternative - AM Peak Hour

Highway	Section of Highway
Southbound I-75	Clay Avenue exit ramp to the Warren Avenue exit ramp
Southbound I-75	EastboundI-94 entrance ramp to the westbound I-94 entrance ramp

Locations Anticipated to Operate at Level of Service F 2025 Build Alternative - PM Peak Hour performance as compared to the No-Build Alternative is a result of a forecasted increase in demand for the improved I-94. Some of the additional traffic expected to utilize I-94 would access the corridor via I-75, thereby degrading operating conditions.

The I-94 Rehabilitation Project includes only the reconstruction of the I-94/I-75 interchange and immediately adjacent elements necessary to accommodate the new configuration. The improvements necessary to maintain acceptable levels of service along northbound and southbound I-75 through the design year would not be built as part of this project, but are presented herein as improvements to be considered in a future MDOT I-75 corridor study per MDOT direction. The cost of these improvements is not included in the project cost estimate presented in this report.

The following is a summary of measures necessary to improve performance along all segments of I-75 to LOS E or better during both peak hours under the 2025 Build Alternative:

Northbound I-75

- I-94 exit ramp to Warren entrance ramp: add additional freeway lane;
- Warren entrance ramp to westbound I-94 entrance ramp: extend acceleration lane (from Warren entrance ramp) to 2,000 feet; and
- Eastbound I-94 entrance ramp to Clay exit ramp: add full auxiliary lane between the entrance and exit ramp.

Southbound I-75

- Clay entrance ramp to I-94 exit ramp: add full auxiliary lane between the entrance and exit ramp;
- I-94 exit ramp to Warren exit ramp: extend deceleration lane (to Warren exit ramp) to 900 feet; and
- Eastbound I-94 entrance ramp to westbound l-94 entrance ramp: extend acceleration lane (from eastbound I-94 entrance ramp) to 1,500 feet.

The AM and PM peak hour freeway level of service results for the 2025 Build Alternative are provided in Figures 19A - 19F (see Volume 2). Figures 15A - 15N and Figures 16A - 16N illustrate the volumes and the results for the HCS freeway analyses performed, as well as the type of HCS analysis performed (for example, ramp merge, ramp diverge, freeway segment, or weave) for the AM and PM peak hours.

Tables 10A - 10D indicate that none of the $\mathrm{I}-94, \mathrm{M}-10$, and $\mathrm{I}-75$ freeway segments within the project area are expected to have a volume-to-capacity ratio greater than or equal to 1.00 under the Build Alternative.

5.5 PEAK HOUR SURFACE STREET VOLUMES

The origin of peak hour surface street volumes under Existing Conditions is described in Section 3.2.1.1. The existing traffic on I-94 also was presented in Traffic Report, Volume 1: Existing Conditions (February 1996). Based on continual construction projects within and around the project area since 1995 (which has resulted in numerous detours), current traffic counts would not reflect an accurate condition. Therefore, the 1995 data was determined to be the best representation of the current traffic condition and was not updated to the year 2000. The AM peak hour, PM peak hour, and Average Daily Traffic (ADT) volumes for the 1995 Existing Conditions are provided in Figures 5A - 5N, 6A $6 N, 7 A-7 N$, and $8 A-8 C$.

AM and PM peak hour turning-movement volumes for the No-Build and Build Alternatives were developed using traffic volumes generated from the 2025 TRANPLAN model. The process of deriving peak hour turning-movement volumes consisted of balancing the number of vehicles entering and leaving each of the study intersections. It was assumed that future traffic would use similar driving patterns as the existing traffic. Therefore, the percentage of vehicles turning for each approach to an intersection remained constant with the 1995 turn percentages in most locations. All volumes were rounded to the nearest five vehicles.

The AM peak hour, PM peak hour, and ADT volumes for the 2025 No-Build Alternative are provided in Figures 9A-9N, 10A-10N, 11A-11N, and 12A-12C. The AM peak
hour, PM peak hour, and ADT volumes for the 2025 Build Alternative are provided in Figures 15A-15N, 16A - 16N, 17A - 17N, and 18A - 18C. Year 2025 traffic volumes are also presented in Traffic Report, Volume 3: Simulation of Year 2025 Conditions (August 2002).

5.6 PEAK HOUR SURFACE STREET LEVEL OF SERVICE

The following sections present a summary of the operations analysis of surface street intersections based on the three commonly used measures of effectiveness:

Capacity

Intersection capacity is an objective engineering concept which measures the physical adequacy of the intersection to accommodate the traffic demand (or "traffic flow"). It is represented by the critical Volume/Capacity (V/C) ratio. An intersection with the critical V/C of over 1.0 is considered to have insufficient capacity to accommodate the projected traffic demand.

Level of Service

Level of Service (LOS) is a subjective measure of the quality of intersection operations as experienced by the average driver. For intersections, control delay (the average delay as a result of the signal or sign control regulating the intersection) is used as a proxy measure to assess the driving experience. As control delay increases, the driver experience and the perceived level of service decreases. Similar to freeway analysis, level of service for intersections is represented with letter grades A through F, with A being the best performance (with drivers experiencing the least control delay).

For the 1995 Existing Conditions, the level of service criteria for signalized intersections is based on stopped delay and is provided in the 1994 Highway Capacity Manual. The level of service criteria for signalized intersections is shown in Table 11 (see Volume 2). The level of service criteria for unsignalized intersections is provided in Table 12 (see Volume 2).

For the 2025 No-Build and Build Alternatives, the level of service criteria for signalized intersections are based on control delay and are in the 2000 Highway Capacity Manual, Special Report 209. The level of service criteria for signalized intersections is shown in Table 13 (see Volume 2). The level of service criteria for unsignalized intersections is provided in Table 14 (see Volume 2).

Queuing

Queue length is an empirically-derived value of the approximate length of a queue of vehicles based on the arrival pattern and the number of vehicles that would not clear an intersection during a given green phase. $90^{\text {th }}$ percentile queue length is reported for critical intersection movements, representing a conservative queuing condition during peak demand periods from which to gauge potential storage overflow issues.

5.6.1 Existing Conditions Surface Street Level of Service

Tables 15A - 15C (see Volume 2) provide the level of service results for the 1995 Existing Conditions analysis along the I-94, M-10, and I-75 corridors, respectively. These tables show the overall intersection level of service and the critical volume-tocapacity ratio for each intersection during the $A M$ and PM peak hours. The $90^{\text {th }}$ percentile queue, and the potential for surface street vehicles to back up onto the freeway ramp, is also indicated for surface street intersections located immediately downstream from a freeway exit ramp or at the terminus of a ramp.

Level of Service and Critical Volume/Capacity Ratio

Based on HCS analysis results, all surface street intersections currently perform at LOS D or better during both peak periods except for the southbound M-10 Service Drive at Warren Avenue, which operates at LOS F during both the AM and PM peak hours. In addition, all intersections currently operate with V/C less than 1.0, with the exception of the southbound $\mathrm{M}-10$ Service Drive at Pallister Avenue, which has a critical V/C of greater than 1.0 during the AM peak hour.

Queuing

Based on existing traffic volumes, two locations have the potential for traffic to "spillback" onto the freeway ramp: southbound M-10 Service Drive at Forest Avenue (PM peak hour) and at Pallister Avenue (AM and PM peak hours). This assumes that spillback occurs only on the freeway ramp, when in fact it might occur on the service drive. If the intersection is congested, vehicles may spillback due to inadequate storage on the surface streets.

5.6.2 No-Build Alternative Surface Street Level of Service

Tables 16A - 16C (see Volume 2) summarize the level of service results for the 2025 No-Build Alternative for intersections along the I-94, M-10, and I-75 corridors, respectively. These tables show the overall intersection level of service and the critical volume-to-capacity ratio for each intersection during the AM and PM peak hours. The $90^{\text {th }}$ percentile queue, and the potential for surface street vehicles to back up onto the freeway ramp, is also indicated for surface street intersections located immediately downstream from a freeway exit ramp or at the terminus of a ramp. There are four ramps along I-94 and three ramps along $\mathrm{M}-10$ that could potentially backup onto the ramp in the No-Build Alternative. Three of the ramps along I-94 have the potential to have a queue greater than 500 -feet, however, none of these spillbacks enter the freeway.

Level of Service

The majority of the surface street study intersections along I-94, M-10, and I-75 are expected to operate at LOS D or better in the AM and PM peak hours under the NoBuild Alternative. However, nine intersections are expected to operate at LOS E or F in the year 2025 due to the increase in projected traffic:

- Grand River Avenue and the westbound I-94 service drive: LOS F (PM)
- Mt. Elliott Avenue and westbound Harper Avenue: LOS E (AM) and LOS F (PM)
- Van Dyke Avenue and Harper Avenue: LOS E (AM) and LOS F (PM)
- Van Dyke Avenue and the westbound I-94 service drive: LOS E (PM)
- McClellen Avenue and Gratiot Avenue: LOS F (AM and PM)
- Gratiot Avenue and Harper Avenue: LOS E (AM)
- Gratiot Avenue and the westbound I-94 exit/entrance ramp: LOS E (AM)
- Gratiot Avenue and the eastbound I-94 exit/entrance ramp: LOS F (PM)
- Southbound M-10 service drive and West Grand Boulevard: LOS E (PM)

Synchro was used to evaluate intersections with one or more approaches that include a shared turn-movement along with an exclusive turn lane. HCS does not have the capability of modeling this geometric configuration. Cases where Synchro results are displayed are noted in the tables. Note that Synchro does not provide critical volume/capacity ratio as an output.

Critical Volume/Capacity Ratio

Seven study intersections along I-94, M-10, and I-75 have a critical V/C ratio greater than or equal to 1.00 under the No-Build Alternative:

- Mt. Elliott Avenue/Westbound Harper Avenue (PM)
- Van Dyke Avenue/Harper Avenue (AM and PM)
- Van Dyke Avenue/Westbound I-94 Service Drive (PM)
- Gratiot Avenue/Harper Avenue (AM)
- Gratiot Avenue/Westbound exit/entrance ramp (AM and PM)
- Gratiot Avenue/Eastbound exit/entrance ramp (PM)
- Northbound I-75 Service Drive/Ferry Street (PM)

Queuing

Seven locations were found to have a potential for traffic to "spillback" onto the freeway ramp under 2025 No-Build Alternative conditions:

- Mt. Elliott Avenue/Westbound Harper Avenue (AM)
- Van Dyke Avenue/Westbound I-94 Service Drive (AM)
- Van Dyke Avenue/Eastbound I-94 Service Drive (AM and PM)
- French Road/Eastbound I-94 Service Drive (AM)
- Southbound M-10 Service Drive/Forest Avenue (AM and PM)
- Southbound M-10 Service Drive/West Grand Boulevard (AM)
- Southbound M-10 Service Drive/Pallister Avenue (AM and PM)

Spillback occurs when the intersection is congested and there is inadequate storage on the surface streets. While the spillback could potentially enter onto the freeway ramp, it will mostly occur on the service drive. There are three locations where the $90^{\text {th }}$ percentile queue exceeds 500 -feet and still less than 1000 -feet. In all the locations, the spillback will not enter the mainline freeway and, at most, be contained on the freeway ramp.

5.6.3 Build Alternative Surface Street Level of Service

Tables 17A - 17C (see Volume 2) summarize the level of service results for the 2025 Build Alternative for intersections along the I-94, M-10, and I-75 corridors, respectively. These tables show the overall intersection level of service and the critical volume-tocapacity ratio for each intersection during the $A M$ and PM peak hours. The $90^{\text {th }}$ percentile queue, and the potential for surface street vehicles to back up onto the freeway ramp, is also indicated for surface street intersections located immediately downstream from a freeway exit ramp or at the terminus of a ramp.

The proposed design of some intersections have been modified since the release of the Traffic Report, Volume 3: Simulation of Year 2025 Conditions (August 2002) to improve individual traffic movements, reduce critical volume-to-capacity ratios, and mitigate potential spillback concerns that arose during design refinement and analysis. Table 18 (see Volume 2) presents these design changes.

Level of Service

All study intersections are anticipated to perform at LOS D or better during both peak hours under the Build Alternative, with one exception: The northbound approach of the intersection of Gratiot Avenue/McClellan Avenue is expected to perform at LOS F during the PM peak hour. The proposed design of this intersection has been modified since the release of the Traffic Report, Volume 3: Simulation of Year 2025 Conditions. Under the updated Build Alternative, the intersection would be unsignalized, with right-turn-in/right-turn-out operation only for McClellan Avenue, in order to reduce closely spaced signals and associated congestion in the vicinity of the I-94/Gratiot Avenue interchange. Under this operation, the stop sign-controlled approach (northbound McClellan Avenue) is anticipated to operate at LOS F during the PM peak hour, based on forecasted volume levels given the current intersection operation. However, the change in operation at this location is anticipated to result in a natural redistribution of traffic to other surface streets, thereby reducing northbound volume levels. In addition, the HCS analysis conducted for this location does not take into account the effects of adjacent traffic signals, which meter flow along the corridor and provide gap opportunities for mid-block traffic to enter the roadway. Therefore, based on these considerations, no further design refinements are proposed at this time to improve forecasted level of service. The Michigan Department of Transportation would monitor this intersection in the future to determine whether remedial action may be necessary to maintain an acceptable level of service.

As stated previously, in cases where the geometry of an intersection includes a shared turn-movement along with an exclusive turn lane on the same approach, Synchro analysis results are provided in Tables 17A - 17C. HCS is not capable of modeling this geometric configuration.

Critical Volume/Capacity Ratio

All but one of the study intersections along I-94, M-10, and I-75 has a critical V/C ratio greater than or equal to 1.00 under the Build Alternative: The Gratiot Avenue/Eastbound I-94 Service Drive intersection is expected to have a critical V/C ratio greater than 1.00 during the PM peak hour; However, the overall intersection is forecasted to operate at LOS D. It should be noted that where Synchro was used to evaluate intersection
performance, the critical volume/capacity ratio is not reported because it is not an output of Synchro.

Queuing
Four intersections within the immediate project area have been identified as locations where vehicle queuing could potentially spillback onto the freeway ramp. Spillback occurs when the intersection is congested and there is inadequate storage on the surface streets. While the spillback could potentially enter onto the freeway ramp, it will mostly occur on the service drive. There are three locations where the queue exceeds 500 -feet and still less than 1000-feet. In all the locations, the spillback will not enter the mainline freeway and, at most, be contained onto the freeway ramp.

- Brush Street/Eastbound I-94 Service Drive (PM)
- Russell Street/Eastbound I-94 Service Drive (PM)
- Chene Street/Harper Avenue (Eastbound I-94 Service Drive) (PM)
- Gratiot Avenue/Eastbound I-94 Service Drive (PM)

In addition, a fifth location with the potential for spillback onto a freeway ramp has been identified within the study area, but outside of the Build Alternative project area:

- Southbound M-10 Service Drive/Pallister Avenue (AM and PM)

Modifications to this intersection and exit ramp are not included in the Build Alternative.
It should be noted that for locations where Synchro was used to evaluate intersection performance, the queuing estimate reported represents the estimated $95^{\text {th }}$ percentile queue, as opposed to the $90^{\text {th }}$ percentile queue as reported by HCS. This represents a more conservative estimate of queuing potential.

5.7 FREEWAY SEGMENT RESULTS ADJACENT TO PROJECT LIMITS FOR THE YEAR 2025

Analyses of adjacent segments of I-94 were conducted in order to better understand how the corridor is expected to perform outside of the immediate study area. The following segments were included in this analysis:

- West Extension: Between 30th Street and the I-96 Interchange
- East Extension: Between Conner Avenue and Whittier Road/Harper Avenue

The volumes forecasts for adjacent freeway segments for the year 2025 are based on the SEMCOG TRANPLAN model. This section provides the HCS results for the 2025 No-Build and Build Alternatives for those freeway segments adjacent to the project area.

5.7.1 No-Build Alternative

The HCS analysis of the No-Build Alternative indicates that adjacent freeway segments would be expected to operate primarily at LOS E or F during the AM and PM peak hours by the year 2025. During the AM peak hour, westbound I-94 both east and west of the
project area is expected to operate primarily at LOS F. During the PM peak hour, eastbound I-94 east of Conner Avenue (the eastern limit of the project area) and westbound I-94 west of I-96 (the western limit of the project area) are both expected to perform primarily at LOS F. Level of service results can be found in Table 9 and Figure 14, see Volume 2.

5.7.2 Build Alternative

Under the Build Alternative, the east and west limits of the project area represent the transition between the proposed eight-lane freeway section and the existing six-lane section. The adjacent freeway segments are assumed to be unchanged in geometry from their existing condition, and therefore under the same constraint of capacity as exists today.

HCS analysis indicates that the majority of I-94 both east and west of the project area would operate at LOS E or F during both peak hours by the year 2025. Eastbound I-94 west of I-96 (the western limit of the project area) is expected to operate at LOS F between the 30th Street entrance ramp and the West Grand Boulevard entrance ramp during the AM and PM peak hours. Once vehicles pass through the project area (east of Conner Avenue), the freeway is expected to operate primarily at LOS F during the PM peak hour.

As with the No-Build Alternative, traffic operations for vehicles entering the project area from the east (or along westbound I-94, west of Whittier Road) are expected to primarily operate at LOS F during the AM peak hour. The freeway is expected to operate at LOS E or F during the AM and PM peak hours once vehicles leave the project area to the west (westbound I-94, west of I-96).

In comparing the No-Build Alternative with the Build Alternative, eastbound I-94 is anticipated to be more congested entering the study area under the Build Alternative during the PM peak hour and slightly more congested in the AM peak hour. Westbound I-94 is expected to be slightly more congested entering the study area in the AM and PM peak hours with the Build Alternative compared to the No-Build Alternative. This increase in congestion adjacent to the project area is anticipated as a direct result of increased demand for I-94 within the project area due to improvements proposed under the Build Alternative. Congestion within the project area is forecasted to decrease under the Build Alternative, relative to the No-Build condition.

A slight increase in congestion is expected on adjacent segments of I-94 exiting the project area during the AM and PM peak hours under the Build Alternative relative to the No-Build condition. This is anticipated as a result of the increase in vehicle throughput within the project area relative to the adjacent segments where throughput is more constrained.

Level of service results can be found in Table 10 and Figure 19 (see Volume 2).

5.7.3 Observations Regarding Adjacent Freeway Segments

The freeway segments along I-94 adjacent to the project area are expected to remain three lanes in each direction through the 2025 analysis year. Based on forecasted traffic
volumes, these segments would operate either at or near capacity during peak periods. In most cases, segments forecasted to perform at LOS F are operating near the boundary between LOS F and LOS E, with volumes approximately 100 vehicles per hour over the LOS F threshold.

5.8 ADDITIONAL PROPOSED TRAFFIC SIGNALIZATION AND SIGNING

The construction of a continuous service drive along I-75 through Milwaukee Avenue will require a new signal installation to maintain acceptable intersection performance through the year 2025. In addition, the Cadillac Avenue intersections with the eastbound and westbound I-94 service drives, currently stop-controlled intersections, would require traffic signals with the capability for left-turn phasing in order to maintain acceptable levels of service through the year 2025. No other new traffic signals are proposed under the Build Alternative.

A traffic signal at the intersection of Gratiot Avenue and McClellan Avenue would be removed under the Build Alternative, due to the proposed change in operation at this location. Based on the proximity of the intersection to the relocated ramp terminal for the l-94 eastbound off-ramp, a change in operation to right-turn in/right-turn out only is proposed, which would negate the need to maintain a traffic signal at this intersection.

Traffic signal optimization should be provided at all signalized intersections along the project corridor once all freeway and surface street improvements have been implemented and traffic patterns have been established. Traffic projections for the future year 2025 are estimates based on a travel-demand forecasting model; actual traffic volumes might vary from these projections.

Permanent signing plans have not yet been completed for this project. Some proposed changes in access and interchange reconfiguration will require modified signage. The majority of existing signage that is still applicable under the No-Build Alternative would be able to remain in place, as most overpass locations would not change with the Build Alternative. Because the Build Alternative would eliminate left-hand entrances and exits and improve ramp spacing, greater options for sign locations would exist, and overall signage requirements would likely be reduced.

6.0 ACCESS CONNECTIONS AND DESIGN

This chapter details the design criteria used for development of the Build Alternative, along with identifying necessary exceptions from the currently adopted American Association of State Highway and Transportation Officials (AASHTO) Interstate Design Standards.

6.1 DESIGN CRITERIA

The following design criteria, where applicable, were applied to the Build Alternative. The criteria are derived from American Association of State Highway and Transportation Officials, $20014^{\text {th }}$ Edition, A Policy on Geometric Design of Highways and Streets (Green Book). The Build Alternative was designed to meet these criteria wherever practical and feasible. Exceptions are discussed in Section 6.2.

Criteria Category	Criteria for Mainline
1. Design Speed	$50-70 \mathrm{mph}$ (60 mph desirable), AASHTO 2001, p. 507
2. Lane Width	12.0 ft .
3. Shoulder Width	- Median Shoulder: 12.0 ft . with 2.0 ft . shy distance - Outside Shoulder: 12.0 ft . - Auxiliary Lane Shoulder: 8.0 ft . to 12.0 ft . for sight distance
4. Bridge Width	Approach Roadway, AASHTO 2001 p. 510
5. Structural Capacity	HS-25-44
6. Horizontal Alignment	Exhibit 3-14, AASHTO 2001, p. 145
7. Vertical Alignment	Exhibit 3-76 and 3-79 (Project is lighted), AASHTO 2001 pp. 274 and 280
8. Grades	Exhibit 8-1 (Level Terrain) 3-4\% (Urban) max. 0.5\% min., AASHTO 2001 p. 510
9. Stopping Sight Distance	Exhibit 3-1 and 3-2, AASHTO 2001 pp. 112 and 115
10. Cross-slopes	2.0\% for Lanes and Median Shoulder and 4\% for Outside Shoulders
11. Superelevation	Exhibit 3-22 (emax = 6\%), AASHTO 2001 p. 509
12. Vertical Clearance	14.75 ft . across roadway and usable shoulder (14.5 ft . minimum clearance plus 0.25 ft . accommodation for future resurfacing), AASHTO 2001 p. 510
13. Horizontal Clearance	Minimum Width = Normal Shoulder Width, AASHTO 2201, p. 765

Design Criteria for I-94, M-10 and I-75 Mainline

Criteria Category	Criteria for System Interchange Ramps
1. Design Speed	Loop Ramps: 30 mph, AASHTO 2001, p. 829 Direct Ramps: 35 - 45 mph (40 mph desirable), Exhibit 10-56 Middle Range, AASHTO 2001, p. 830
2. Lane Width	- Two lanes: 12.0 ft . - One lane: 16.0 ft .
3. Shoulder Width	- Left Shoulder 8.0 ft . to 12.0 ft . for sight distance on curves - Right Shoulder 8.0 ft. to 12.0 ft . for sight distance on curves
4. Bridge Width	Approach Roadway, AASHTO 2001, p. 510
5. Structural Capacity	HS-25-44
6. Horizontal Alignment	Exhibit 3-14, AASHTO 2001, p. 145
7. Vertical Alignment	Exhibit 3-76 and 3-79* (Project is lighted), AASHTO 2001, pp. 274 and 80
8. Grades	$\begin{aligned} & \text { 4-6\% (4\% desirable) max. } \\ & 0.5 \% \text { min., AASHTO } 2001 \text { p. } 833 \\ & \text { Maximum grades shown are for short tangent distances. } \end{aligned}$
9. Stopping Sight Distance	Exhibits 3-1 and 3-2, AASHTO 2001, pp. 112 and 115
10. Cross-slopes	2.0\%
11. Superelevation	Exhibit 3-22 (emax = 6\%), AASHTO 2001, p. 509
12. Vertical Clearance	14.75 ft . across roadway and usable shoulder (14.5 ft . minimum clearance plus 0.25 ft . accommodation for future resurfacing), AASHTO 2001 p. 510
13. Horizontal Clearance	Minimum Width = Normal Shoulder Width, AASHTO 2201, p. 765

Design Criteria for System Interchange Ramps

Criteria Category	Criteria for Service Drives
1. Design Speed	30 mph , AASHTO 2001 p. 434
2. Lane Width	11 ft , AASHTO 2001 p. 437
3. Shoulder Width	- Left Shoulder: 0.0 ft . - Right Shoulder: 8.0 ft to 11.0 ft . AASHTO 2001 p. 438
4. Bridge Width	Approach Roadway plus Sidewalk, AASHTO 2001, p. 440
5. Structural Capacity	HS-25-44
6. Horizontal Alignment	Exhibit 3-44, AASHTO 2001, p. 196
7. Vertical Alignment	Exhibit 6-2* (Project is lighted), AASHTO 2001, p. 426
8. Grades	6-9\% max., 0.3\%min.; AASHTO 2001, p. 435, and Exhibit 6-8, AASHTO 2001, p. 436 Maximum grades shown are for short tangent distances.
9. Stopping Sight Distance	Exhibits 3-1 and 3-2, AASHTO 2001, pp. 112 and 115
10. Cross-slopes	2.0-3.0\%, AASHTO 2001, p. 435
11. Superelevation	Exhibit 3-44, AASHTO 2001, p. 196
12. Vertical Clearance	14.75 ft . across roadway and usable shoulder (14.5 ft . minimum clearance plus 0.25 ft . accommodation for future resurfacing), AASHTO 2001 p. 510
13. Horizontal Clearance	Minimum Width $=$ Normal Shoulder Width, AASHTO 2201, p. 765

Design Criteria for Service Drives

6.2 DESIGN EXCEPTIONS AND JUSTIFICATIONS

For interstate projects, the FHWA has developed a list of 13 controlling design criteria. Design elements falling under these criteria must adhere to full interstate standards as contained in the 2001 AASHTO Green Book and are typically applied to the interstate mainline corridor. The design criteria utilized in this project are presented in Section 6.1. The 13 controlling criteria are as follows:

1. Design speed;
2. Lane width;
3. Shoulder width;
4. Bridge width;
5. Structural capacity;
6. Horizontal alignment;
7. Vertical alignment;
8. Grades;
9. Stopping sight distance;
10. Cross-slopes;
11. Superelevation;
12. Vertical clearance; and
13. Horizontal Clearance.

It should be noted that there are important design features in addition to those identified in the 13 controlling criteria which must be given careful consideration during the project development process. These include capacity, lane balance, weaving, accelerationdeceleration lengths, ramp and lane tapers, and other elements of sound design. In addition, safety features must conform to the Roadside Design Guide relative to clearzones, side-slopes, ditches, roadway features, and barriers associated with medians, bridges, obstacles, etc. These features are not controlling criteria and do not require processing a formal design exception. Design exceptions will be required in this category as well and include criteria related to ramp spacing, exit and entrance ramp terminals, capacity, ramp horizontal sight distance, etc.

Based on the preliminary engineering completed to date, all interchange improvements are designed to meet or exceed AASHTO and Michigan Department of Transportation (MDOT) geometric design standards where practical and feasible. However, two design exceptions and one design justification are necessary at various locations based on constraints within the project corridor and the highly developed nature of the project area:

- Design Exception: Freeway Mainline Shoulder Width / Horizontal Clearance
- Design Exception: Horizontal Stopping Sight Distance (potential)
- Design Jusification: Ramp Terminal Spacing

The following sections present each of these design exceptions and the locations where they are required.

6.2.1 Design Exception: Freeway Mainline Inside Shoulder Width / Horizontal Clearance

A design exception for the horizontal clearance based on the inside shoulder width along a mainline freeway section is required at the following location:

6.2.1.1 I-94 Dequindre Bridge

The Dequindre Bridge along I-94 is located just east of I-75, beginning at Russell Street (west abutment) and ending at St. Aubin Avenue (east abutment). The structure is approximately 2,350 feet long and was rehabilitated in 2000 at an approximate cost of $\$ 50$ million to mitigate severe deterioration. The rehabilitated bridge includes 4-foot inside shoulders, based on the design criteria for a "long bridge" from A Policy on Design Standards-Interstate System, AASHTO, 1991, which was used for design of the rehabilitation project. This criteria states that "On long bridges, offsets to parapet, rail or barrier shall be at least 4 feet measured from the edge of the nearest traffic lane on both the left and the right.".

Adherence to current design criteria for inside shoulder width would have impacts on adjacent property (including special or hazardous waste sites), as well as adding significant costs to the proposed project. As a result, the study team has been directed by MDOT with FHWA's concurrence to maintain the recently completed Dequindre Bridge rehabilitation inside shoulder width of 4 feet. While maintaining the inside shoulder width of 4 -foot along the bridge, a design exception is needed for the horizontal clearance.

Proposed Geometry

Under the Build Alternative, the existing Dequindre Bridge would be widened to accommodate ramp reconfigurations, auxiliary lanes, and additional lanes (one in each direction). The majority of the widening is proposed on the northern side of I-94 in an effort to minimize building impacts to the south. The outside shoulders will be 12 -foot to match the approach mainline.

The proposed alignment of I-94 generally follows the existing alignment, as illustrated in Figure 4F (see Volume 2). The horizontal alignment contains a long tangent on the west side of the bridge, in proximity to the I-75 ramps and flat horizontal curves to the east by St. Aubin Avenue. The ramps on the Dequindre Bridge to and from Chene Street and the on-ramp from northbound and southbound I-75 to eastbound I-94 are essentially maintained at their current locations. The off-ramp configuration from westbound I-94 to northbound and southbound I-75 has been maintained as a collectordistributor configuration with one exit to I-75 from westbound I-94. This was necessitated by the inclusion of the fly-over ramp to southbound I-75 to provide for required vertical clearances and providing recommended standard ramp grades. Other design criteria used include:

- Horizontal sight distance westbound I-94 (existing and proposed)
- Radius = 3300 feet
- Middle Ordinate $=10$ feet, provides for design speed of 57 miles per hour (mph)
- Middle Ordinate required for 60 mph design speed $=12.5$ feet

Basis for Design Exception

While the inside shoulder width of 4 -feet on the Dequindre Bridge meets the minimum standard, this width results in a horizontal clearance below the minimum design standards. Reconfiguration and additional widening of the Dequindre Bridge to accommodate 12- foot inside shoulders would require acquisition of additional right-ofway, and impacts on known special or hazardous waste sites. Construction cost of increasing inside shoulder widths to meet current AASHTO standards is estimated at $\$ 9$ - 10 Million, not including right-of-way acquisition or hazardous/special waste cleanup costs.

In order to determine the relative safety of the existing configuration, a crash analysis was conducted based on data obtained for the period 1999-2001. Tables 5A and 5B (see Volume 2) present a summary of the crash data (frequency and type) and injury crashes (number and severity) within and adjacent to the l-94 project limits. The Dequindre Bridge segment includes the following ramps:

- The westbound I-94 off-ramp to northbound and southbound I-75
- The northbound and southbound I-75 on-ramp to eastbound I-94; and
- The Chene Street ramps (entrance to westbound I-94 and exit from eastbound I-94).

The crash data within the limits of the Dequindre Bridge structure indicates that a threeyear total of 85 crashes occurred on the structure, which ranks $9^{\text {th }}$ out of 19 segments within the project area. A total of ten fixed-object crashes (a indicator of the adequacy of buffer space between travel lanes and the bridge rail or barrier) occurred in the threeyear analysis period on the Dequindre Bridge, which ranked $10^{\text {th }}$ out of 19 segments. In addition, nine sideswipe crashes occurred on the structure over the three-year period, which ranked $11^{\text {th }}$, along with four other segments. Injury crashes, within the bridge limits, based on both frequency and severity, ranked $11^{\text {th }}$ in each category with no fatalities or type A (incapacitating) injuries.

A crash rate analysis was performed in the Traffic Report, Volume 1: Existing Conditions and the Traffic Report, Volume 1 - Addendum for the I-94 Rehabilitation Project using crash data from 1990 through 1993. The crash rate data within the Dequindre Bridge area shows a crash rate of 178 crashes per million vehicle miles (MVM) along westbound I-94 and 280 crashes per MVM for eastbound I-94. The average crash rate for interstates in southeast Michigan is 350 crashes per MVM.

From the above, the crashes occurring within the Dequindre Bridge segment do not show an over-represented frequency, rate, or crash pattern that can be attributed to the 4-foot wide inside shoulder.

Conclusions

While maintaining the minimum inside shoulder width of 4-feet on the Dequindre Bridge, the horizontal clearance does not meet minimum standards. However, reconfiguration of the recently rehabilitated I-94 Dequindre Bridge, which adhered to AASHTO Design Standards for long bridges when it was designed, to meet current standards would result in significant additional property and hazardous waste impacts, as well as cost.

Furthermore, the existing Dequindre Bridge inside shoulder width (4 feet) does not appear to have a significant effect on crashes and safety, even under the extremely congested conditions that exist along the mainline and ramps in this area today. It can be expected that with the implementation of the Build Alternative, including the addition of auxiliary lanes at ramps and an additional through lane in each direction, safety and operations would improve.

6.2.2 Design Exception: Horizontal Stopping Sight Distance (Ramps)

Within the I-94/I-75 and I-94/M-10 interchange complexes, ramp design speed criteria for horizontal and vertical controls are 40 miles per hour (mph). Based on the ultimate combination of horizontal and vertical alignments, it is probable that design exceptions would be required within some ramp segments due to the height of the concrete safety barriers along the inside of curves. For example, if the concrete safety barrier is higher than 2.75 feet (height at the mid-point of sight line) on a horizontal curve with a minimum radius for 40 mph , the middle ordinate required to provide stopping sight distance at 40 mph would be 22 feet. However, the middle ordinate on a one-lane ramp would be 16 feet, (comprised of an 8 -foot inside shoulder and 8 feet to the centerline of a one-lane ramp), which would provide for adequate stopping sight distance for a maximum of 35 mph , using a minimum ramp radius for 40 mph . Exact locations where horizontal sight distance design exceptions may be necessary would be determined during the Engineering Report phase.

A possible solution that could be investigated during detailed geometric studies is to provide a 32 -inch-high barrier along the inside of curves, where the sight distance restriction occurs, and a 42 -inch barrier on the outside of curves, where impacts typically occur. In addition, a wider inside shoulder could be used in the design to increase sight distance. These options would be evaluated during the Engineering Report phase to minimize or eliminate any necessary design exceptions.

6.2.3 Design Justification: Ramp Terminal Spacing

Due to the urban, densely developed nature of the area and the $50+$ year-old design of the project corridor, ramp terminal spacing in most instances do not currently meet minimum standards established by AASHTO. While all reasonable attempts have been made to increase ramp spacing under the Build Alternative, in some cases it is not feasible to adhere current standards.

Since geometrics have not been defined precisely during this stage of the project development process, a conservative approach has been used in measuring distances between ramp terminals. The distances identified within this section are approximated by measuring between the painted noses rather than physical or gore noses. Therefore, the values indicated in the next section should not be compared with the distances used in the capacity analyses since those distances were measured as defined in the Highway Capacity Manual.

Since there are no design criteria for ramp terminal spacing, a design exception is not required. However, a design justification for ramp terminal spacing based on AASHTO minimum standards would be required at the following locations:

6.2.3.1 Eastbound I-94: M-10 Entrance Ramps, Brush Street Exit Ramp, and I-75 Exit Ramp

Along eastbound I-94, the proposed distance between the M-10 northbound and southbound entrance ramps, the Brush Street exit ramp, and the I-75 exit ramps do not meet the minimum ramp spacing requirements stipulated in AASHTO. The following table summarizes the approximate ramp terminal spacing within this segment under the Build Alternative, as well as AASHTO minimum
requirements. The Build Alternative configuration for this segment is illustrated
in Figures 4C - 4D
(see Volume 2).

Ramp Terminals		Terminal Spacing (feet)	
Upstream	Downstream	Build Alternative	AASHTO Minimum
M-10 Entrance	Brush St. Exit	1,500	2,000
Brush St. Exit	I-75 Exit	800	1,000

Ramp Terminal Spacing Design Exceptions Eastbound I-94: M-10 to I-75

In order to maximize spacing between the three ramp terminals, the location of the Brush Street exit ramp has been shifted downstream to the point where the weaving distance between $\mathrm{M}-10$ and Brush Street has been maximized, to the extent possible, relative to the location of the ensuing exit ramp to $\mathrm{I}-75$. With the relocation of the John R Avenue exit ramp to Brush Street, the exit ramp gore would be relocated approximately 600 feet further downstream from the M-10 interchange. Ramp spacing between the M-10 entrance ramp and the Brush Street exit ramp would therefore increase significantly relative to the existing condition.

Basis for Design Justification

The existing distance along I-94 between $\mathrm{M}-10$ and $\mathrm{I}-75$ is slightly over one mile. Accommodating system-to-system ramps within this segment, in addition to a service interchange, provides little flexibility in meeting spacing requirements.

The only reasonable potential for adhering to minimum spacing standards within this segment is through elimination of the existing John R Avenue exit ramp, which was considered as part of the project development process. However, after a public outcry over the proposed removal of this existing access point, it was agreed that access would be maintained, but modified to better meet geometric requirements. Hence, under the Build Alternative, the proposed ramp (providing direct access to Brush Street) would be located approximately 600 feet downstream from the existing ramp in order to maximize ramp spacing to the extent possible.

A review of average crash rates shows that the segment of eastbound I-94 between the M-10 entrance ramps and John R Avenue exit ramp experiences 355 crashes per MVM, which is approximately equal to the average crash rate in southeastern Michigan. The existing left-hand entrance ramp, sub-standard taper-type entrance ramp terminals and imbalance of lane use all have a significant negative impact on safety and mobility within this segment. Under the Build Alternative, elimination of the left-hand entrance, addition of auxiliary lanes and improved lane balance will all contribute to improving the safety and operation of this segment, which currently experiences an average crash rate relative to other freeway segments in southeast Michigan.

A capacity analysis of the segments within this area indicates that the freeway is expected to perform at LOS F under the 2025 No-Build Alternative during both the AM and PM peak hours. However, under the 2025 Build Alternative, the segment between the Brush Street exit ramp and the l-75 exit ramp is anticipated to operate at LOS B during both peak hours. The segment between the $\mathrm{M}-10$ entrance ramp and Brush Street exit ramp, which is forecasted to operate at LOS D during the AM peak hour and LOS E during the PM peak hour. It should be noted that, due to the number of lanes within this segment (four through lanes and two auxiliary lanes), it was necessary to modify the HCS analysis, as Highway Capacity Software does not permit an input of six lanes for a freeway analysis. The analysis was instead run as a five-lane section, with 1,000 vehicles deducted from the through volume per MDOT and FHWA direction. Actual level of service is likely to be better than what is reported, as this approach represents a highly conservative analysis (since the capacity of a lane is 2,200 vehicles per hour per lane (vphpl) rather than 1,000 vphpl).

Conclusions

Operations and safety along this segment of eastbound I-94 would be significantly improved under the Build Alternative through increased ramp spacing over the existing condition, the addition of a general-purpose lane, elimination of the left-hand ramps at the $\mathrm{M}-10$ interchange, and inclusion of an auxiliary lane between the $\mathrm{M}-10$ entrance ramp and the Brush Street exit ramp. These improvements will reduce congestion and weaving. The proposed ramp spacing would therefore not adversely affect operations and safety.

6.2.3.2 Eastbound I-94: Northbound and Southbound I-75 Entrance Ramp and Chene Street Exit Ramp

Along eastbound I-94, the proposed distance of 1,400 feet between the northbound and southbound I-75 entrance ramp and the Chene Street exit ramp under the Build Alternative would not meet the minimum AASHTO requirement of 2,000 feet. The existing ramp spacing is approximately 1,300 feet. The segment is depicted in Figure 4E-F (see Volume 2).

Basis for Design Justification

The existing Chene Street exit ramp serves considerable truck and passenger vehicle traffic destined for industrial complexes in the area, including the Detroit Department of Transportation garages and offices, the General Motors Cadillac Plant, and the Thorn Apple Valley Plant. Shifting the exit ramp downstream to East Grand Avenue was investigated, as it would provide for adequate ramp spacing. However, the East Grand Avenue entrance ramp to eastbound I-94 would then overlap with the Mount Elliott Street exit ramp, making this unfeasible. In addition, the Chene Street exit ramp would provide more direct access to the industrial areas from eastbound I-94.

A crash analysis of this segment indicated that eastbound I-94 currently experiences a crash rate of 280 crashes per million vehicle miles (MVM), less than the southeastern Michigan average crash rate of 350 crashes per MVM. There currently are three through lanes and an auxiliary lane along eastbound I-94 between the northbound and
southbound I-75 entrance ramp and the Chene Street exit ramp. The Build Alternative proposes four through lanes and two auxiliary lanes in this same section. One of the auxiliary lanes is proposed as an exit-only lane to Chene Street, while the second would allow the option of exiting or remaining on eastbound I-94, thereby facilitating weaving from eastbound I-94 to the Chene Street exit ramp while not forcing I-75 entrance ramp traffic to change lanes (Type B weave) to remain on eastbound I-94. The auxiliary lane is retained for capacity purposes and continues to Van Dyke Avenue where it is dropped as the exit ramp. Therefore, under the proposed configuration, safety would be enhanced considerably over existing conditions.

A capacity analysis indicates that this segment would operate at LOS C during the AM peak hour and LOS E during the PM peak hour under the Build Alternative. The proposed configuration of this section of eastbound I-94 would include four through lanes and two auxiliary lanes, for a total of six lanes. Since the Highway Capacity Software does not permit an input for six lanes, the analyses were run assuming a fivelane section, with a deduction of 1,000 vehicles from the forecasted through volume per MDOT and FHWA direction. Actual level of service is likely to be better than what is reported, as this approach represents a highly conservative analysis (since the capacity of a lane is 2,200 vehicles per hour per lane (vphpl) rather than $1,000 \mathrm{vphpl})$. .

Conclusions

Operations and safety would be improved significantly under the Build Alternative since congestion would be reduced with the addition of a general-purpose lane and the safety enhanced by increasing ramp spacing and providing (in addition to the existing mandatory exit lane) an additional auxiliary lane that would be a optional exit/through lane. The proposed ramp spacing would not adversely affect operations and safety.

6.2.3.3 Westbound I-94: Brush Street Entrance Ramp and Northbound and Southbound M-10 Exit Ramp

Along westbound I-94, the proposed distance between the Brush Street entrance ramp and the $\mathrm{M}-10$ exit ramp of 1,300 feet would not meet the minimum AASHTO requirement of 2,000 feet between ramp terminals. The existing spacing between the John R Avenue entrance ramp (which would be replaced by the Brush Street entrance ramp under the Build Alternative) and the $\mathrm{M}-10$ exit ramp is 1,240 feet. The segment is depicted in Figure 4D (see Volume 2).

Basis for Design Justification

The existing distance along I-94 between $\mathrm{M}-10$ and $\mathrm{I}-75$ is slightly over one mile. Accommodating system-to-system ramps within this segment, in addition to a service interchange, provides little flexibility in meeting spacing requirements. Under the Build Alternative, AASHTO minimum spacing requirements would be met between the I-75 entrance ramp and the Brush Street entrance ramp to westbound I-94.

Design alternatives were reviewed in an attempt to meet spacing requirements along this segment. Were the Brush Street entrance ramp to be moved further east to increase the spacing, the spacing and merge-distance requirements for the northbound and southbound I-75 two-lane entrance ramp would be violated. Contrarily, moving the
northbound and southbound $\mathrm{M}-10$ exit ramp further west would exceed the maximum criteria for profile grade for the fly-over ramp to southbound $\mathrm{M}-10$ and result in a sharper horizontal ramp alignment and consequently lower the design speed (40 mph) for the flyover and outside ramp. Therefore, horizontal and vertical constraints preclude increasing ramp spacing in this direction.

Similar to this segment in the eastbound direction, the only reasonable potential for adhering to minimum spacing standards is through elimination of the existing John R Avenue exit ramp, which was considered as part of the project development process. This access was retained, however, after public outcry over the potential of closing this interchange. The proposed ramp would be 300 feet further upstream of $\mathrm{M}-10$, therefore increasing the ramp terminal spacing over the existing condition.

The crash rate along westbound I-94 from the existing John R Avenue entrance ramp to the $\mathrm{M}-10$ exit ramp is 297 crashes per million vehicle miles (MVM), which below the average crash rate of 350 crashes per MVM. This segment is currently characterized by a lack of auxiliary, acceleration or deceleration lanes, a left-hand exit to southbound $\mathrm{M}-10$, and poor lane balance at the $\mathrm{M}-10$ interchange. Under the Build Alternative, the segment would be upgraded to include an additional travel lane, an auxiliary lane, improve acceleration/deceleration distances and elimination of the existing left-hand exit, all of which will contribute to improved operations and safety.

The capacity analysis of the corridor indicates that under the 2025 No-Build Alternative, this segment of I-94 is expected to operate at LOS F during both the AM and PM peak hours. Under the Build Alternative, westbound I-94 between the northbound and southbound I-75 entrance ramp to the Brush Street entrance ramp is anticipated to perform at LOS D during both peak hours. Between the Brush Street entrance ramp and the $\mathrm{M}-10$ exit ramp, westbound $\mathrm{I}-94$ is forecasted to operate at LOS B during both the AM and PM peak hours under the Build Alternative.

Conclusions

Operations and safety along this segment of westbound I-94 would be significantly improved under the Build Alternative through the addition of a general-purpose lane, elimination of the left-hand ramps at the $\mathrm{M}-10$ interchange, and inclusion of an auxiliary lane between the Brush Street entrance ramp and the $\mathrm{M}-10$ exit ramp. These improvements will reduce congestion and weaving, and increase the ramp spacing over the existing condition. The proposed ramp spacing would therefore not adversely affect operations and safety.

6.2.3.4 Westbound I-94: Chene Street Entrance Ramp to I-75 Exit Ramp

Along westbound I-94, the proposed ramp spacing between the Chene Street entrance ramp and the $1-75$ exit ramp of 955 feet would not meet the AASHTO minimum requirement of 2,000 feet. The existing ramp spacing is approximately 1,600 feet. The segment is depicted in Figure 4F (see Volume 2).

Basis for Design Justification

Under the Build Alternative, the ramp spacing between the Chene Street entrance and the I-75 exit would be increased by approximately 50 feet. However, meeting the AASHTO minimum spacing of 2,000 feet would require removal or major relocation of the Chene Street entrance ramp, which was determined to be not feasible or desirable, as the ramp provides critical access to a major industrial area. Removal or relocation of the ramp would result in diversion of truck traffic through adjacent neighborhoods to reach the area.

The crash rate along westbound I-94 between the Chene Street entrance ramp and the I-75 exit ramp is 178 crashes per million vehicle miles (MVM), well below the average crash rate of 350 crashes per MVM for southeast Michigan. Safety is expected to be improved under the Build Alternative through the addition of a general purpose lane, which will reduce congestion and improve conditions for weaving between the two ramps.

The capacity analysis illustrates that this segment is expected to perform at level of service (LOS) F in the AM peak hour and a LOS E in the PM peak hour under the 2025 No-Build Alternative. Under the 2025 Build Alternative, the segment is anticipated to operate at LOS E in the AM peak hour and LOS D in the PM peak hour. Therefore, it is expected that the Build Alternative would increase capacity and mobility within the segment.

Conclusion/Mitigation

The Build Alternative would improve operations along westbound l-94 between the Chene Street entrance ramp and I-75 exit ramp by providing a slight increase in ramp spacing and through the addition of a general purpose lane, while maintaining the existing auxiliary lane between the two ramps. The increased capacity within this segment would reduce friction and improve opportunities for weaving maneuvers.

6.2.3.5 Northbound I-75: Eastbound I-94 Entrance Ramp and Clay Street Exit Ramp

Along northbound I-75, the existing ramp spacing between the eastbound I-94 entrance ramp to the Clay Street exit ramp of 1,050 feet does not meet the minimum AASHTO requirement of 2,000 feet. Since reconstruction of I-75 is not included this project beyond what is needed to accommodate the system-to-system interchange and service drives, ramp spacing and all other existing elements along l-75 would remain unchanged. The ramps from I-94 to I-75 would transition into the existing entrance ramp to $I-75$; therefore, all gore area and terminals would remain at their present locations. The segment is depicted in Figure 4Q (see Volume 2).

MDOT anticipates that a rehabilitation project would be initiated along I-75 in this section a considerable time before the projected year 2025 time frame. At that time, ramp spacing and auxiliary lane options would be developed and implemented.

Basis for Design Justification

In order to increase ramp spacing at this location, major improvements to l-75 would be required, or the Clay Street exit ramp would need to be eliminated. It was found to be neither practical nor feasible to relocate the l-94 entrance ramp to northbound I-75 further south to increase the ramp spacing based on geometric constraints and right-ofway required. In addition, operational improvements, such as the addition of an auxiliary lane, were found to be cost prohibitive, as any widening of I-75 would require replacement of the East Grand Boulevard and Grand Truck Railroad over I-75 bridges, both of which are in satisfactory condition. Therefore, the existing configuration is proposed to remain in place under the Build Alternative until such as time as MDOT initiates improvements to the l-75 corridor.

Conclusions

Based on limitations in the size and scope of this project, ramp spacing at this location would remain as it exists today until such a time that MDOT initiates improvements to the I-75 corridor. The Build Alternative would match into the existing entrance ramp at this location and would therefore result in no operational changes from the existing condition. Improvements would be required along I-75 at this location to maintain acceptable levels of service through the design year.

Although not all deficiencies along northbound I-75 would be addressed as part of this project, safety would be enhanced with the proposed improvement since the l-94 and I-75 interchange complex would be reconstructed. The existing ramps within the interchange are sub-standard relative to horizontal curvature, sight distance, merge and diverge tapers, etc. The Build Alternative would provide an interchange that is safer since existing deficiencies would be brought up to higher standards.

6.2.3.6 Southbound I-75: Clay Street Entrance Ramp and Eastbound and Westbound I-94 Exit Ramps

Along southbound I-75, the existing distance between the Clay Street entrance ramp and the eastbound and westbound l-94 exit ramp of 1,050 feet does not meet the minimum AASHTO ramp spacing criteria of 2,000 feet. Since reconstruction of I-75 is not included this project beyond what is needed to accommodate the system-to-system interchange and service drives, ramp spacing and all other existing elements along I-75 would remain unchanged. The ramps from I-94 to I-75 would transition into the existing entrance ramp to I-75; therefore, all gore area and terminals would remain at their present locations. This segment is depicted in Figure 4Q (see Volume 2).

MDOT anticipates that a rehabilitation project would be initiated along I-75 in this section a considerable time before the projected year 2025 time frame. At that time, ramp spacing and auxiliary lane options would be developed and implemented.

Basis for Design Justification

Adjustments to increase ramp spacing at this location were evaluated during project development, but were deemed to be detrimental to the overall design of the I-94/I-75 interchange. Ramp spacing could be increased by providing maximum allowable grades
on the exit ramps to l-94. However, the marginal increase in ramp spacing gained by this adjustment would not warrant the negative effects of increasing the grades on these ramps, such as reduced operating speeds. Furthermore, even with this adjustment, it would not be feasible to meet AASHTO ramp spacing standards.

In addition, operational improvements, such as the addition of an auxiliary lane, were found to be cost prohibitive, as any widening of I-75 would require replacement of the East Grand Boulevard and Grand Truck Railroad over I-75 bridges, both of which are in satisfactory condition. Therefore, the existing configuration is proposed to remain in place under the Build Alternative until such as time as MDOT initiates improvements to the I-75 corridor.

Conclusions

As stated previously, based on limitations in the size and scope of this project, ramp spacing at this location would remain as it exists today until such a time that MDOT initiates improvements to the I-75 corridor. The Build Alternative would match into the existing entrance ramp at this location and would therefore result in no operational changes from the existing condition. Improvements would be required along I-75 at this location to maintain acceptable levels of service through the design year.

Although not all deficiencies along southbound I-75 would be addressed as part of this project, safety would be enhanced with the proposed improvement since the I-94 and I-75 interchange complex would be reconstructed. The existing ramps within the interchange are sub-standard relative to horizontal curvature, sight distance, merge and diverge tapers, etc. The Build Alternative would provide an interchange that is safer since existing deficiencies would be brought up to higher standards.

7.0 TRANSPORTATION PLANS, LAND USE PLANS, AND THE NEPA PROCESS

This chapter describes how the I-94 Rehabilitation Project is incorporated into the environmental process.

7.1 TRANSPORTATION AND LAND USE PLANS

The I-94 Rehabilitation Project has been developed to be consistent with regional and local land use and transportation plans. The 2015, 2020, and 2025 Regional Transportation Plans for southeast Michigan prepared by SEMCOG, the organization responsible for regional planning, identify the need to widen I-94 within the project area from six to eight lanes. This project would satisfy this need, as the Build Alternative would include construction of an additional lane in each direction.

The proposed I-94 Rehabilitation Project is included in the SEMCOG 2025 Regional Transportation Plan and Transportation Improvement Program (TIP) as a study. Upon completion of the study, the recommended Build Alternative would be included in the SEMCOG regional transportation plan and TIP as a proposed project. The recommended Build Alternative would be included in the SEMCOG air quality analysis to determine conformity with the State Implementation Plan (SIP) for air quality. The proposed project conforms with the SIP if the project does not add excess pollutants to the state's air quality budget. FHWA might issue clearance for the project after the proposed project is included in the TIP and found to be in conformance with the SIP.

In addition, the Build Alternative is supportive of local land use and transportation plans. The project is consistent with the current City of Detroit Master Plan, dated July 1992, and has been included in the most recent master plan for Wayne State University, dated September 2001. Service drive and surface roadway improvements Included in the project would enhance access and beautify the project area. In March, 2001, the City of Detroit Department of Public Works issued a letter of support of the project. In August 1, 2003, the Detroit City Council unanimously passed a resolution in support of the Build Alternative, which was subsequently approved by the Mayor's Office. Appendix A contains official agency and municipal letters of support for the l-94 Rehabilitation Project.

7.2 NEPA ENVIRONMENTAL PROCESS

A Draft Environmental Impact Statement (DEIS) has been prepared for this project. The DEIS was presented to the public in March 2001. The Final Environmental Impact Statement (FEIS) is currently being prepared and will be submitted by Fall 2004 to the FHWA for a Record of Decision (ROD) by Spring 2005.

The Recommended Alternative is included in the SEMCOG 2025 Regional Transportation Plan (RTP) for southeast Michigan, adopted on March 20, 2003. The study is also included in the SEMCOG Transportation Improvement Program (TIP) adopted on September 26, 2003. It is expected that SEMCOG will adopt the 2030 Regional Transportation Plan in November 2004 with the inclusion of the I-94 Rehabilitation Project.

8.0 COORDINATION

The Michigan Department of Transportation (MDOT) employs a comprehensive public participation and agency coordination process for alternatives analyses and environmental documentation. This process was initiated at the beginning of the project in December 1994 and has continued throughout project development. The process involves two main elements:

- Community participation by citizen groups and organizations as well as individuals; and
- Coordination with federal, state, and local governments, and agencies, and other interested entities.

This chapter summarizes the local, public, and agency meetings held as part of the l-94 Rehabilitation Project. Letters of support for this project are included in Appendix A.

8.1 PROJECT MEETINGS

This section summarizes the local, public, and agency meetings held as part of this project.

8.1.1 Local and Public Meetings

Early in the project development process a Citizens Advisory Committee (CAC) was established. Representatives of special-interest groups, block clubs, community organizations, churches, school district administration, and business and institutional groups attended four CAC meetings and assisted in disseminating project information to constituencies. The CAC reviewed proposed alternatives and provided input to the study team. Input from the CAC was used in defining and evaluating the alternatives considered in this study.

Ten public information meetings were conducted to present project status and alternatives to interested parties. The meetings were publicized using major local print media, television stations, radio, and specialty minority news networks. Meeting dates and locations are listed below:

- 05/23/95, Crockett Vocational/Technical Center
- 05/24/95, Crockett Vocational/Technical Center
- 12/12/95, Cobo Conference and Exhibition Center
- 04/23/96, Kettering Sr. High School
- 04/24/96, Northwestern High School
- 04/25/96, Wayne County Community College, Eastern Campus
- 05/12/99, Kettering Sr. High School
- 05/13/99, Museum of African American History
- 10/21/03, Museum of African American History
- 10/22/03, Wayne County Community College, Eastern Campus

The following issues were voiced most often at the public information meetings and have been important in the development of the Build Alternative:

- Noise levels and other environmental issues
- Impacts on schools and bus routes
- Displacement of households and businesses
- Role of transit
- Construction schedule
- Increased traffic impacts
- Right-of-way and property appraisals
- Reserved space in median
- Retaining walls and noise barrier walls
- Continuous-service-drive impacts to neighborhoods
- Speed limits
- Bridge replacements and pedestrian walkways

Approximately 100 meetings were also held with various groups by request. Meetings were held with local institutions, business associations, neighborhood councils, churches, and other local organizations. In some cases, follow-up meetings were held. After redesign of the I-94/M-10 interchange, meetings were held with residents of the Fourth Street neighborhood and Research Park Apartments, as well as representatives of Wayne State University (WSU), to discuss the changes. Numerous meetings were also held with individual community members and business owners.

Key issues discussed in these group meetings include project timelines, funding, property displacements, noise abatement, freeway aesthetics, access during construction, exit and entrance ramp placement, neighborhood development initiatives, emergency vehicle access, compatibility with business, and institutional expansion plans. All comments by community and special groups were considered as part of this study.

A telephone survey was conducted in September 1995 to assess the awareness, usage, impact, and concerns of local residents and businesses in the l-94 project area. More than 450 residents and small business owners were contacted as part of the survey. Demographic information and public reaction regarding proposed modifications were collected from responders.

Two project-area focus group studies, both conducted on August 17, 1995, helped to identify critical issues and to design quantitative research data-collection instruments. One focus group consisted of 16 adult residents living within one mile of the I-94 project area. The second focus group consisted of seven small-business owners within the same area.

Public hearings were held on March 5, 2001, at the Charles H. Wright Museum of African American History and on March 6, 2001, at Kettering Sr. High School. The hearings gave the public an opportunity to learn more about the project, ask questions, and have their concerns added to the public record. The Public Hearing was an openhouse format, allowing attendees to study project exhibits and ask questions. Court reporters were available to record and document the comments of individuals.

Oral comments from the Public Hearing and written comments were reviewed, considered, and evaluated. The Draft Environmental Impact Statement (DEIS) Build

Alternative was modified based on public input, benefits to the community and travelers, and evaluation of the social, economic, and environmental impacts of the alternatives. A recommended Build Alternative was selected by MDOT and FHWA in October 2002. On August 1, 2003, the Detroit City Council approved the recommended Build Alternative.

8.1.2 Agency Meetings

In January 1995, coordination letters describing the proposed project were distributed to interested agencies. The purpose of the letters was to inform agencies of the project and to promote the agencies' involvement in project planning.

The Interagency Coordination Committee (ICC) was established as a steering committee for the I-94 project. Members of the ICC include representatives of:

- MDOT;
- The City of Detroit;
- SEMCOG;
- FHWA;
- Wayne County;
- The Detroit Department of Transportation (DDOT);
- The Suburban Mobility Authority for Regional Transportation (SMART); and
- Macomb County.

More than 30 meetings with the ICC have been conducted since December 1994. The alternatives studied in this DEIS were influenced by the ICC, and the group continues to provide oversight to the study.

Since December 1994, numerous meetings have been conducted with public officials and agency representatives to discuss project issues relevant to specific areas of interest and jurisdiction. Meetings included representatives of federal, state, and local agencies and other entities. Many issues were discussed, including improved collaboration among agencies, cooperative planning, technical input, and design aspects of the project. Informational presentations and updates to planning and design of alternatives were provided as needed. Comments from these meetings are incorporated in the evaluation of the alternatives.

8.2 LETTERS OF SUPPORT

There have been many responses to the Draft Environmental Impact Statement (DEIS) that agree that the freeway is congested and needs to be repaired. Letters of support for this project have been received. In March, 2001, the City of Detroit Department of Public Works issued a letter of support of the project. On August 1, 2003, the Detroit City Council provided concurrence on the recommended Build Alternative. Appendix A contains official agency and municipal letters of support for the I-94 Rehabilitation Project.

8.3 PRIVATE, STATE, AND LOCAL COMMITMENTS OF NONINTERCHANGE IMPROVEMENTS

The I-94 Rehabilitation Project is one of many projects intended to improve the transportation system in the City of Detroit and southeast Michigan. This project is not driven by private, state, or local commitments of non-interchange improvements that are required for adequate operation of the freeway system.

8.4 OTHER PROJECTS

Numerous projects on other interstate freeways and highways are scheduled within Detroit to improve the city's transportation infrastructure. These roadway improvements surrounding the project area would compliment the I-94 Rehabilitation Project:

- Ambassador Bridge Gateway Project
- Replace the DDOT downtown transit terminal.
- Modify the l-375 / east Jefferson Avenue interchange and improve access to local roads at this interchange.
- Rehabilitate, replace superstructures, and/or replace bridge decks along various bridges along $\mathrm{I}-75$ and $\mathrm{M}-10$ in Wayne County.
- Replace bridge decks at M-10 and I-94
- Replace various bridge decks on I-94 in Wayne County.
- Structure replacement of two bridges at the I-94/I-96 interchange.
- Replace deck on the eastbound I-96 to I-94 eastbound ramp.
- Geometric changes, signal revisions, and signal modernization throughout the City of Detroit at frequent crash locations and various locations.
- Pavement markings, stop bars, crosswalks, and symbols at more than 375 intersections throughout the City of Detroit.
- Resurface/Reconstruct various roadways throughout the City of Detroit.

These projects are listed in the Fiscal Year 2004 - 2006 Transportation Improvement Program and are scheduled to occur between 2004 to 2006.

Appendix A: Letters of Support

STATE OF MICHIGAN,
 City of Detroit

CITY CLERK'S OFFICE, DETROIT

I, JACKIE L. CURRIE , City Clerk of the City of Detroit, in said State, do hereby certify that the annexed paper is a TRUE COPY OF RESOLUTION (Adjourned)
adopted (passed) by the City Council at session of AUGUST 1
and approved by Mayor
as appears from the Journal of said City Council in the office of the City Clerk of Detroit, aforesaid; that I have compared the same with the original, and the same is a correct transcript therefrom, and of the whole of such original

In Witness Whereof, I have hereunto set my hand and affixed the corporate seal of said City, at Detroit, this 16 TH

City Planning Commlsslon
Honorable City Council:
Re: Froposed Expansion of I-94
(Departmental Status Report and Aesolution).
On August 1, 2003 the Michigan
Department of Transportation (MDOT) wilt give a presentation to your Honorable Body on its current plan for the l-94 Rehabilitation Project. MDOT is requesting the City Council's support for this Session so that the planning process for the Froject will not be disrupted.
In 2001 the City Council approved the attached resolution supporting the Build Alternative included in the dratt Environmental Impact Statement of the 1-94 Project with 11 changes (Atrachment A). This resolution was e result ot a recommendation of the City Planning Commission (CPC) and the City Council's request that CPC staft meet with repreWorks and other aftecled Execulive Branch departments to come to a consensus regarding the City's position and recommendation to MDOT regarding the project. A meeting did lake plece between CP; ${ }^{\text {C }}$ and the departments, and recommendations and the resolution that was approved by Councll were developed That resolution substantially reflecled the recormmendation made by CPC .
Since the time that resolution was continued to evolve and your Honorable Body's comments were taken Into account. CPC steff has attanded several meetings with MDOT and its consultants and, most recently, representatives from the Mayor's ottice, DPW, and DDOT. The most recent iteration of the design, as described in the "1-94 Rehabilitation Project Recommended Allernatives Analysis Final Feport", appears to substantially address the concerns raised in your previous resolution. The following addresses each of the changes request ed by your Honorable Body in the pravious resolution, with the recommended change in italics.

1. The removal of the fifty-five toot wide center median. This has been done.
2. The addition of continuous 38 feet 2. The addition of continuous 38 fee wide service drives in each direction (two 11 foot wide traffic lanes and a 16 foot wide multi-purpose lane for polential Administration (FHA) will only pay for two Administration (FHA) will only pay tor two 11 toot wide traffic lanes and an eight (8)
foot wide shoulder thet can be used for parking If justified and for bus stops. The 16 fool lane cannol be funded with tederal dollars and also some residents expressed taars that a wide service drive vould lead to speeding.
service drive concept, the continuous street east of Woodward and parallel a street east of Woodward and paral/el to protect the residences along Hendrie St. This has been included east of the new treeway exit east of Woodward. MOOT will istribute an example of what this could look like at its presentation on August 1.
3. The preparation of an Environmental Assessment considering the entire $1-94$ corridor from wyoming to 1 696. This will be done.
4. The inclusion in he EIS of consideration of the Detroit tntermodal Freight Terminal Study's impact on truck treffic on 1-94. Thls has been done:
5. The reduction in the spacing between the euxiliary lanes and mainline lanes as much as possible and ine ightening of ramping gecmerrics in orty. This has been preliminarily done (and much mproved), and wilt be urther analyzed as the final design is entered jinio.
6. The provision of special considerafion to the schools zlong the corridor segarding noise mitigetion, including that they not be treated es residences in determining whether noise barriers are justified. The MOOT guidelines state that public use areas suchas schots shich seems cory low given that there are hundreds of thildren in the schools
7. The provision oi a close examination in the EIS of using rapid transit as a traftic construction mifigation component, using flexible TEA 21 unding in the corridor. MDOT is agreeabe to funding ODOT perations along the 194 corridor. SEMCOG has not identified a direct rail alternative to I-94, and so there presently are not any rail alternatives that couid is not unded using the tay that a ral alternative could not be to say that a ral allernake cou expansion occurs, or that MOOT could not encourage the development of such alternatives as part of a larger roure.
8. The correction by MOOT of ell existing noise and alr qualify viopations os part of any reconstruction of the rreeway, per ederal guidelines. This will be done.
9. The securing by moOr of all unaing for the nolse barrers - walls, landing for modifications of streets intersecting the service drives and on-going mainlenance of the barrit walls before any highway approvals are given. Memorandums of understanding will be developed between the City and MDOT describing exact maintenance responsibilities. If the City knons which streets it would like modified, MDOT requests that the provided with this inlomalon so the package presented to FHA
10. The analysis oi the railroad right-of-way east of $l-75$ ard south of l-94 for use as both a vehiculas road and continuing as a railroad line, given its importance as a link in the railroad line linking Metro Airport/Ann Arbor and downtown Detroit. his will remain a rail corridor.
Staff hopes that titis information will assist your Honorable Body in considertion in support of the reconstructlon of 1 94. A resolution (Attachment B) is submitted for your consideration it you choose to act on this matter. It is a revision of the previous resolution with the deletton of the previously recornmended changes and an update of the eighth "whereas", regarding a regional transit agenda.

$$
\begin{aligned}
& \text { Fespectullya submitted, } \\
& \text { MARSHA S. BRUHN } \\
& \text { Director } \\
& \text { GREGOFY F. MOOTS }
\end{aligned}
$$

ATTACHMENT E
Council Member Bates:
Whereas, The City of Datroit, through Works, Transportation, and Planning and Development, and the City Planning Commission (CPC), has been involved with the Michigan Department of Tansportatioulion and expansion ot tha he reconstruction and expansion of ha 96 ; and
Whereas, MOOT has produced a draft Environmental Impact Statement (DEIS): and
Whereas, As part of the DEIS, a Build
Whereas, That Build Alternative con. ains numerous signiticant modifications, many of which improve the functioning and satety of the freeway; and
CPC have held public heorings and the DEIS and received many constructive DEIS and received many consiructive inclusion of provisions for mass transit and expressing concerns about the widening of the right-ol-way; and
Whereas, Upon reviow of the document, the City Planning Commission ound that mass transit alternatives or mass transit complements to the selected asign do nol appear to have been ade properly represented within the DEIS prope
Whereas, Near-in suburbs and those ining the highway network are lacing the mpacts of improvement to that network, necessiteted by a decaying end/or inerficient infrastructure, existing trattic congestion and projected future demand; and Whereas, The formation of the Detroit Area Regional Transit Authority provides a mechanism whereby a regional transit agenda may be pursued and developed; and
Whereas, I-94 is a key component of the area's transportation network, linking Whereas, Both the CPC and Executive Branch departments have met and devaloped a joint recommendation regarding the DEIS
Now, Therefore, Be it Resolved, Tha the Detroit City Council supports the proosed Build Alternativa;
at this resolution hesolved, That copy of this resolution be lorwarded to the Michigan Department of Transportation, SEMCOG, the Detroit Regional Chambe
of Commerce and others as appropriate. Adopted as follows.
Yeas - Council Members Bates, K Cockrel, Jr., S. Cockrel, Collins, Everet McPhall, Tinsley-Talabl, Watson, and President Mahafley - 9 .
Nays - None.

Printed in the Detroit Legal News dated 8/14/03, Pg. 10.

April 2, 2001

Ronald S. Kinney, Manager
Michigan Department of Transportation
Project Planning Division/Environmental Section
P.O. Box 30050
Lansing, Michigan 48909

RE: Draft Environmental Impact Statement (DEIS) from the U.S. Department of Tiansportation/Federal Highway Administration for a project entitled "I-94 Freeway Rehabilitation Project, East of I-96 to Conner Avenue, Detroit, Wayne County, Michigan" Regional Clearinghouse Code: TR 010033

Dear Mr. Kinney:

SEMCOG, the Southeast Michigan Council of Governments, has processed a review for the above Draft EIS according to intergovernmental review procedures established in NEPA and Federal agency guidelines

As the designated regional planning agency for Southeast Michigan, we notified the following local government agencies of your project:

> Wayne County Planning Division
> Detroit Planning \& Development Department
> Suburban Mobility Authority for Regional Transportation

As of this date, no comments have been received. We will forward comments, if any, for your information and attention.

SEMCOG's staff has reviewed the Draft EIS which you submitted and offers attached comments from our Transportation Program staff (C. Palombo 3/30/2001) and Environmental Program staff (B. Parkus $3 / 6 / 2001$).

We look forward to your response and the Final EIS when it is completed.
Sincerely,

Richard W. Pfaff, Jr.

Regional Review Coordinator
RWP/bar
Attachments

March 30, 2001

TO: Rich Pfaff
FROM: Carmine Palombo

SUBJECT: I-94 Draft Environmental Impact Statement \& Section 4(f) Evaluation

The Transportation Department has reviewed the I-94 Draft Environmental Impact Statement \& Section $4(f)$ Evaluation and offers the following comments.

General comments

The I-94 corridor is a valuable transportation asset in Southeast Michigan. We support the efforts of the Michigan Department of Transportation to rehabilitate the corridor from I-96 to Conner Avenue in the City of Detroit, thereby improving freeway capacity, safety, and pavement conditions as well as local traffic circulation. The I-94 Rehabilitation Project is listed as a study in the 2025 Regional Transportation Plan for Southeast Michigan (2025 RTP). The project is clearly consistent with 2025 RTP goals and we anticipate the movement of this study to the next phases of design and construction.

Evaluation Summary

- 6.6 Air Quality (page 15) - The project is in the current RTP and TIP as a study only and has not been modeled for air quality conformity. The entire project must be in a conforming RTP and at least one phase of the project in the TIP, including funding sources, and FHWA and FTA must issue a finding of conformity before the Record of Decision can be submitted for approval.

Draft Environmental Impact Statement and Section 4(f) Evaluation

- 2.2 Project Background (page 2-4) - The I-94 study is also listed in the 2025 RTP.
- 2.5.6 Transit, Pedestrians, and Bicyclists (page 2-14) - It is not enough to suppose the new service drives will provide "opportunities for improved transit." MDOT should commit to working with DDOT and SMART to enhance transit service in and through the area. Are routes along the service drives likely to be added? Have the transit agencies been involved during development of the Preferred Alternative? Are there plans and committed funding sources for amenities, including shelters along the service drives to protect transit users from increased traffic, etc.? (This represents a potential environmental justice issue.)
- 4.5.2 Transit (page 4-22) - The 2025 RTP calls for investing $\$ 5.5$ billion in transit, not more than $\$ 6$ billion as the text currently reads.
- 4.7.1 Goal 1 - Mobility (page 4-34) - With respect to analy:ing the Recommended Alternative for commercial traffic, SEMCOG's commercial vehicle model is tentatively scheduled to be available in January 2002. If that time line corresponds to the analysis of the Recommended Altemative, it can be used for evaluation purposes.
- 5.1.1.4 Non-Motorized Mobility (page 5-15) - While SEMCOG agrees the addition of continuous service drives with sidewalks and sidewalks on vehicular bridges over the freeway should enhance non-motorized access, specific attention should continue to be paid to this issue. In particular, the safety of pedestrians and bicyclists along and across the service drives and bridges is a concern. Pedestrian facilities must be more than just sidewalks; they must consist of properly designed walkways, accessible and properly placed crosswalks, etc. Also of concern is the removal/consolidation of some pedestrian bridges. The report states that the high percentage of households without autos increases citizen reliance on non-motorized travel and transit travel (which also requires pedestrian access to transit stops). Therefore, any plans to modify non-motorized access along and across the freeway should be carefully scrutinized with respect to the impacts on local citizens and community cornectivity and should be subject to review by the citizens. An organized meeting of the consultants, citizens, non-motorized experts, and MDOT is also recommended during the design phase.
- 5.1.5 Environmental Justice (page 5-23) - USDOT and FHWA do not specifically outline how environmental justice analyses should be performed. SEMCOG is working with FHWA to develop appropriate regional analysis tools, which may be used to analyze this project upon submittal for inclusion in the RTP and TIP.
- 5.1.5.2 Actions to Address Disproportionately High and Adverse Effects (page 5-26) - A tollfree number for comments/complaints does not seem sufficient. Is there an approachable project office located in the area for residents to access information and convey complaints and concerns during construction?
- 5.5.3.2 Attainment Status of the Project Area (page 5-49) - Southeast Michigan is a maintenance area for 1 -hour ozone, not an attainment area as the text currently reads.
- 5.2 Economic Environment
- The text states that the build altemative would displace five businesses (page 5-31) but also references Table 5-7 (page 5-18) which indicates 15 business structure displacements. Do the five businesses occupy multiple structures? Please clarify.
- It is acknowledged that businessesrelocated some distance away from their original locations would have to reestablish a customer base and could lose money temporarily. Non-displaced businesses could also experience temporary losses during construction. It is suggested that mitigation expand beyond relocation assistance. (This represents a potential environmental justice issue.) For example:
- a special fund could be set up to cover interim operating losses to sustain businesses during construction,
- focused assistance could be offered to help business owners take full advantage of empowerment and renaissance zones where they exist, and
- incentives could be offered for businesses to relocate in the same general area to continue serving the community (the report notes that Segment B particularly depends on comer stores for basic shopping).
- 5.11.2.1 Existing Historic Resources (page 5-80) - The text states that 15 additional buildings must be surveyed to determine NRHP eligibility. Why were these structures not surveyed prior to issuing the DEIS? If they are found to be eligible, how will that impact the continuation of the project?

March 6, 2001
TO: Rich Pfaff, Jr.

FROM: Bill Parkus
$\begin{array}{ll}\text { SUBJECT: } & \text { Draft Environmental Impact Statement, I-94 Freeway Rehabilitation Project } \\ & \text { Regional Clearinghouse Code: TR 010033 } \\ & \text { Michigan Department of Transportation }\end{array}$
SEMCOG staff has reviewed the above referenced Draft Environmental Impact Statement and finds it to be consistent with the Water Quality Management Plan for Southeast Michigan. In general, no impacts from storm water are expected. Storm water is conveyed from the expressway in Detroit's combined-sewers for treatment at the wastewater treatment plant, then released to the Detroit River. However, Thirty contaminated sites could potentially impact the project. At contaminated sites in which the soil will likely be disturbed due to construction, sewer manholes and catch basins should be protected from contaminated runoff to the extent possible. Thus, a permit under Part 91 (Soil Erosion and Sedimentation Control) of P.A. 451 of 1994, the Natural Resources and Environmental Protection Act, may be required.

March 27, 2001

Jose A. Lopez, Public Hearing Officer
Bureau of Transportation Planning
Michigan Department of Transportation
P.O. Box 30050

Lansing, Michigan 48909
RE: Comments on the Draft Environmental Impact Statement (DEIS) for the I-94 Rehabilitation Project

Dear Mr. Lopez:
The City of Detroit (City) has reviewed the DEIS for the I-94 Rehabilitation Project. We believe the study thus far has addressed many of the issues set forth by the City in the past. The current build alternative addressed our issues regarding reserving space on the freeway for Transit, minimizing the impact on two key neighborhoods and correcting the current design of the M-10 and I-75 interchanges.

We favor moving this alternative forward to the next phase but ask that some additional analysis and refinement address the remaining concerns.

Those concems are outlined below:

1) Vehicular and pedestrian overpasses - more discussion as to the locations and number of overpasses necessary to address access issues for both Pedestrians and Transit.

Criteria for removal of any pedestrian bridges should be evaluated to ensure pedestrian friendly environment. The distance for pedestrians to walk in order to cross the freeway shall be minimized and signalized locations shall be made available for safe pedestrian crossing. The City shall have the option to determine whether removal of a pedestrian bridge for re-locating the pedestrian bridges on a case by case basis during the design phase of the project.

During the early part of the design phase, the City will like to have a list of properties to be acquired for the project for determining impact on the neighborhood.

Brush is currently one way north bound at I-94. The project includes new ramp at brush with an assumption that the Brush street will be modified for two way operation. Further discussion with the City is necessary before final determination is made.
2) Continuous Service Drives - speed and signalization is still a concern.

The additional length of service drives and lanes will require further review with the state to compensate for additional maintenance cost.

The city shall modify the lane usage of service drives as and when necessary.
The addition of a third multipurpose lane is most beneficial if the land strips along service drives are planned for commercial developments.

Any street that is required to be discontinued/cut off from accessing the service drive will be evaluated by City to determine its relevance to safety and geometric issues. This can only be determined during the design phase.

Treatment of the discontinued/cut off streets and alternatives provided to the city to determine the best proposal in minimizing the impact on residences as well as business shall be discussed in detail during design phase of the project. The alternative should also be effective in mitigating the impact on garbage pick-up, snow removal, fire emergency vehicles and delivery services to serve the affected business/residences. Modifications required must be part of the design cost.
3) Maintenance and impact on City facilities and the city's ability to maintain operations before during and after construction.

During re-construction of $I-94$, accessing major business/traffic generators such as City Airport, Wayne state University, Cultural Center, New Center Area and Downtown should be prioritized to minimize the impact.

Russell Street will be discontinued at I-94, the north bound traffic will be maintained using the proposed new road way (west of Grand Trunk RR), but the south bound traffic will not be able to use the new roadway south of west bound service drive. The southbound surface access will require use of East Grand Blvd/St. Aubin and loop around I-94 ramp for FWY access. There will be major impact on City facilities which may affect city services to the public. We seek more discussion and perhaps a traffic study and construction plan to determine impacts and mitigation necessary. Also, more discussion on the bypass road proposed to replace Russell Street is necessary. Since Russell Street is a commercial frontage road, alternatives suggested may impact residential property.
4) Retaining walls and noise buffers -additional discussion on the proposed retaining walls and/or noise barriers.

What noise abatement measures will be done for residents that live along areas of the freeway where noise barriers will not be constructed?
5) Other projects underdevelopment or underway how will they be comprehended in the

I-94 Rehabilitation project such as the Intermodal Freight Project or the proposed Light Rail Project from Metropolitan Airport
6) We reviewed the air quality data and put the following question comments.

Why was air quality monitoring data for the project area taken from the Livonia monitoring station? This question was based upon information provided in section 5.5.4.2 "Existing conditions." Tables 5-10 and 5-11 on pages 5-52, 5-53 shows air quality monitoring stations that were located in Detroit, within the project area. More traffic, and therefore, air quality would be impacted there!

Is this project going to remove green space along the side of the freeway, and if so, how will this affect the storm water runoff?

The Air Quality Impacts need to be revised in light of the Courts decision on Ozone (O_{3}) and Particulate Matter 2.5 microns or smaller $\left(\mathrm{PM}_{2.5}\right)$. Based upon the monitoring data Detroit will be designated non-attainment for Ozone (see attached maps). In addition, the State Implementation Plan (SIP) calls for a reduction in Nitrogen Oxides $\left(\mathrm{NO}_{x}\right)$ which may go beyond the reduction in NO_{x} emissions the Environmental Protection Agency (EPA) is seeking from the Utilities.

The project is required to comply with the National Emission Standard for Hazardous Air Pollutants (NESHAP) for Asbestos, Code of Federal Regulations, Title 40, Part 61, Subpart M , before preceding with the demolition of acquired commercial, industrial and residential structures part of the project.

How will the proposal address Vehicle Miles Traveled (VMT) and corresponding increase in NO_{x} ? What NOx offsets occur as a result of congestion mitigation, if any?

VMT analysis is essential to determine what extra lanes are to be used for. Analysis needs
to be done now or it will never be done.
Southeast Michigan has had (3) three ozone excursions in 1999 and consequently are in maintenance. What measures have been done to assure that the project will not cause future ozone excursions.

Michigan is presently evaluating its NO_{x} compliance and is developing a SIP to comply. Industries within the Detroit Metropolitan area have been called to examine their contributions to NO_{x} and negociate the allowances. What are we doing about mobile sources?

Other issues for further discussion is the potential for the construction of land bridges and the funding. If you would like to discuss these comments further please let me know.

Sincerely,
Atenhorsi A Arlen
Stephanie R. Green
Interim Director
SRG/lt
cc: A. Nwankwo
N. Seabrooks
G. Robinson
M. Patel

May 11, 2001

Jose A. Lopez, Public Hearing Officer
Bureau of Transportation Planing
Michigan Department of Transportation
P.O. Box 30050
Lansing, Michigan 48909
DELIVERED VIA EMAIL \& FAX

RE: I-94 Rehabilitation Project (DEIS) Draft Environmental impact Statement

Attached are my comments for the City of Detroit, Planning and Development Department, regarding the referenced subject. I have also included a map of development projects along the 1-94 corridor.

Sincerely

Donald-Ray Smith
Principal City Planner
drs/DRS

cc: S. Green (DPW)

A. Nwankwo (Parsons Brinckerhoff)

May 10, 2001
Donald-Ray Smith
Principal City Planner
City of Detroit
Plamning and Development Department (P\&DD)
Planning Division

I-94 Rehabilitation Project DEIS (Draft Environmental Impact Statement)

Comments conceming the Build Altemative

It is vital to the City of Detroit that I-94 continues to provide a safe and effective means of transportation to the eommunity, the City of Detroit and the regiom well into the 21 -century. It is clear that the Intcragency Coordination Committee (the "ICC") has continued to challenge MDOT's eonsultants to develop alternatives that do not impact the commanities adjacent to $I-94$, but still meets the growing demand the region has on the interstate system.

Review of the altcrnatives suggests that the Build Alternative will give the City of Detroit and the region increased flexibility to meet the transportation challenges it will face in the coming decades. The Build Alternative has several long-range benefits included in the proposed design. They are as follows:

- Improvements to the I-94/M-10 and I-94/1-75 interchanges,
- Inclusion of right-of-way for a transit option, still to be detenmined,
- Removal of all the left-hand exit ramps,
- Additional lancs for increased capacity,
- Separation of local and through traffic, and
- Increased accossibility and aesthetics

However, the report identifies several impacts the proposed Bujld Altemative would have on the community and the City of Detroit. These impacts can be mitigated as the project moves forward in the final design phase of the project. Discuasion and development of acceptable mitigation measures and alternatives that are compatible with the Build Alternative should be continued with the public, the City of Detroit (and its deparments) and the ICC. Identified below are impacts caused by the proposed Build Altcmative and compatible altematives, rcquiring further discussion:

1. Transportation Systems Management-The inclusion of Transportation Systems Managenent (TSM) can exponentially increase the uscfulaes, safety and longevity of the Recommended Altemative. Installation of the hardware for TSM, specifically, Intelligent Trarsportation Systems (ITS), should be completed during the construction of the altemative.
2. Transit Options-The Build Altemative inchudes a transit option, which is a great benefit to the region
and community. Light Rail, Bus Rapid Transit and other options sanbe includedin the designin the future. It would be beneficial to identify and understand any limitations the construction of the right-ofway for the transit option has on the operation, funding or ownership of a future transit system.
3. Mainline Design Speed - The design, posted and desired speed of commutcrs can be difficult to forecast and control. The design of Interstate 696 and current speed limit enforcement issues are an example of this issuc. Speed also effects the desired speed of commuters on adjacent service drives, noisc levels adjacent to the interstate and the sevcrity of accidents. The design speed of the Recommended Altemative should be evaluated (reduced) to limit the disadvantages associaled with over-designing the alternative.
4. Continuous Service Drive - Therc are several concerns with the continuous service drive (the "CSD"). One of the concems focuses on the impact the CSD would have on the adjacent residential conmumitics. The width and limited access of the proposed CSD might promotehigher commutcr speeds. Resuling in the increase ofnoise levels and decreasing periestrian safety. Reducing the lane width and providing signalized crosswalks could be investigated to reduce commuter specd.

The width of the multi-use lane could also be reduced temporally, to study the effects of a narrower pavement width. Additional margin width between the curb and sidewalk could be added to enhance the pedestrian area

Traffic access into the adjacent residential neighborhoods from the CSD could be reduced, as suggested, by cul-de-sacs and landscaped areas/walls. Maintenance, now removal, refure removal and law enforcement of these areas will require additional imput from MDOT, Detroit Police Department and the City of Detroit, Department of Public Works (DPW).
5. Noise Barriers - Noisc abatement measures should be provided for residents that live, work or attend schools in areas along the freeway conidor where noise barriers are not being proposed. As currently proposed noise abatement will not be provided in neighborhoods where a $\$ 30,000$ cost criteria for being reasonable and fcasible is exceeded. The use of noise barriers should not bc disregarded until assessments and studies can be made after the alternative is construcled:
6. Drainage and Water Quality - The Recommended Altemative should include storm water retention and treatment designs, during construction and in the final design. The design period of the project and the current condition of Detroil's sewerage system can not be assumed to remain "as is" for the design-life of this project. Water quality and storm watcr issues for the Detroit are a regional concern.
7. Displacement of Woodbridge Historic District, United Sonad Systems Recording Studios The impact the Build Altcrnative has on the Woodbridge Historic District and the United Sound Systems Recording Studio should be revicwed with continued commurily intercst a priority.
8. Pedestrian Bridges and Pedestrian Safety - Pedestrian safety and pedestrian access across the Build Altemative is very important to the community and can have economic effects to local businesses. Pedestrian walkways, crosswalks and bike lanes should be included into the alternative wherever possible. Aesthetics should be induded into the design of the pedestrian bridges, not only for the interstate motorist but for the pedestrians. Pedestrian mobility will seriously be restricted through the elimination of current pedestrian bridges, and the inclusion of the cul-de-sac design.
9. Traffic Impacts, DPW Facility - Any concern DPW has regarding the impact that the alternative would have on the operation of its facility should be documented, and addressed as part of the mitigation measures.
10. Air Quality Monitoring - Data should be applied from monitoring stations along or near the project area. Monitoring data uscd in the DEIS was taken from a Livonia monitoring station. It seems reasonable that air quality would be impacted in the project arca by increased traffic and congestion.

Potential improvements concerning the current DEIS

1. Explore the feasibility of scaling back the preferred "Build Alternative". There would be less displacement and construction impacts; creating funding that could be used for potential mass transit. This balanced approach is supported by the 1990 (City of Detroit) Master Plan of Policies. Policy 203-42, pp. II-77 notes: "Considering the transit systern as a public utility much like electricity, gas and water . . . and . . . as an adjunct to the traffic system. Utilizing earmarked trafficway funds on the basis of transit freeing trafficway space and better management of the trafficway system." This coincides with the concept of flexible (flex) funding, which is particularly relcvant for highway projects such as the 1-94 rehabilitation project and its impact on ruture masstransit initiadives. It is also consistent with recent transportation funding legislation (ie: The Intermodal Iransportation Efficiency Act (ISTEA, 1991) and. The Transportation Equity Act for the 21st Century (TEA 21, 1998).
2. It is recommonded that the future center multi-modal lanes be moved to the outside (curb) lane of the service drives. Such a configuration would be pedcstrian friendly, and is more accommodating for potential mass transit stations and transfers. Use of this approach may require the elimination of at least one driving lane on both the east and west service drives. A bencfit is that only two lanes of through traffic, with accompanying side walks, would discourage potential speeding. The reserved multi-modal space should be sufficiently landscaped and buffered from the surrounding land uses.

Potential improvements concerning the currant DEIS (continued)

3. The Planning Division "Urban Design Unit" requires additional plans indicating the extent of the R.O.W. (Right-of-Way) on adjacent land parcels to be absorbed by the project, so they can study the physical impact realistically.

A portion of the $\mathrm{T}-94$ project crosses through the lower and middle Woodward areas which is the location of Detroit's principal cultural and institutional establishments, (as well as) an important business and residential cosidor. This area would benefit from an urban design that enhances the inmediate and sumrounding enviroment.
4. Recommend a special I-94 freeway R.O.W. treatment between the Lodge and I-75 freieway's to highlight its passage through the University-Cultural Center, the Art and Medical Centers at the lower Woodward area, and also to highlight its passage through the Harper-Brush residential area and the New Center Business sections in the middle Woodward. area

Development Projects within the project area

The following current and proposed development projects lie within a half ($1 / 2$) mile buffer, along the I94 Rehabilitation Project comidor.

- West Pointe Homes (I-94 to the south, Epworth to the west, Tireman to the north and Beechwood to the east) - scattered site of residential homes (approx. 60 umits)
- Thyssen Stcel - expansion of cxisting steel factory on land currently used for the Atkinson playficld. $P \& D D$ is working with $D E G C$ to acquire additional property for the playyield replacenent project.
- Core City Neighborhoods - in-fill residential development project within the boundaries identified on attached map. Irmediately south of shaded area is the Jeffries Hope VI project which consists of mixed-income residential development on the existing project site and scattered in-fill in the areas bounded by Warren, Jeffries Freeway, Fisher Freeway and Loulge Freeway.
- Habitat for Humanity (Core City) - residential development for low to modcrate income households. Project area is bounded by Michigan Ave., W. Grand Blvd., M.L. King Blvd., and the Jeffries Fwy.
- Virginia Park Dcvelopment Plan - Redevclopment Plan just north of the 1-94 project area. Plan is being modified and land should be available for disposition in the Fall, 2001. Proposed project consists of residential devclopments (scaltured site and contiguous projects, where appropriate) throughout designated development plan area.
- North Village aka Ncw Amsterdam Project (Woodward Ave. and Burroughs) - consists of the rehabilitation of inve buildings into residential, rctail/commercial and parking along with the
construction of new loft residential and commercial space. In total, the project will produce approximately $60,000 \mathrm{sq}$. ft of retail/commercial space, 237 units of rehabilitated housing, 153 newly constructed housing units and 361 parking spaces.
- New Amsterdam/Gateway/Smart Zone (Tech Park)- The sponsors of the smart rone" research and technology park in the vicinity of Wayne State University (WSU) and Detroit's New Center District. In the first phase, the former Chevy Creative Services Building would be renovatcd into Tech Park One, comprised of 34,000 square feet of research and tochnology inoubator space, 11,000 square feet of businesses assistance agencies and 73,000 square feet of multi-tenant spacc. The WSU/City of Dctroit Smart Zone Project is a great opportinity to develop a certified technology park within the City of Detroit and have it affiliated with one of Michigan's premier research institulions. Project is bounded by Warren Ave. to the north and Forest Avc. to the south.
- Picty Hill (bounded by Pingree, Woodward, Russell and Grand Trunk railroad right-of-way) - in-fill residential housing project targeled toward low and moderate income households.
- Africartown Development - proposed retail/commercial development. Area specific sites have not been identified, to date. Project arca is E. Grand Blyd and Hastings.
- Bing Van Residential Development (see altached map) - scattered site in-fill residential project.
- Forest Park (Mystery Tenant) - developer cannol disclose tonant until site plan review process is initiated. Tcnant is a high tech light manofacturing/warehouse facility on the Forest Park site currently being leased to Greekiown Casino for parking.
- 1-94 Industrial Park Project . a total of 2.2 million square feet of warchouse/industrial buildings. The industrial park will comply with the Michigar Economic Development Corporations standards for a Modern Industrial Park certification (meaning landscaping, modern amenities, and special land use restrictions). Project is bounded by Grimell and Huber to the north; Mount Elliott to the wast; Miller to the south; and St. Cyril to the east.
- Gcnesis Villas (sec attached map) - three phase townhouse development project. Over 120 units of new construction low to moderale in-fill housing development.

Lastly, the I-94 Rehabilitation Project is a significant transportation project with impacts to both the community and region. These impacts should coutinue to be mitigated tbrough continued engineering design and community input.

UNITEQ STATES ENVIAONMENTAL PROTECTION AGENCY
REGION5
77 WEST JACKSON BOULEVARD
CHICAGO, IL 60604-3590

Mr. Jamcs A. Kirschensteiner
Federal Highway Administration
Programs \& Environmental Engineer
315 West Allegan
Room 211
Lansin̄g, Michigan 48933

Re: Comments on the Draft Environmental Impact Statement (DEIS)/Section 4(f) Evaluation for the I-94 Rehabilitation Project from I-96 to Conner Avenue, Detroit, Waync County, Miehigan, EIS No. 010041

Dear Mr. Kirschensteiner:
In accordance with our responsibilities under the National Enviromental Policy Act (NEPA) and Section 309 of the Clean Air Act, we have reviewed the Draft Environmental Impact Statement (DEIS)/Section 4(f) Evaluation for the I-94 Rehabilitation Project from I-96 to Conner. This DEIS evaluates transportation improvements proposed for a 6.7 -mile portion of I-94 from I-96 on the west to Comer Avenue on the east. Two major interchanges in this segment, the M-10 Lodge freeway and the I-75 interchanges are also being proposed for reconstruction.

Information provided in the DEIS indicates that there are problerns that need to be addressed along this 6.7 -mile long section. This section of 1-94 was built in the 1940's and 1950's. The geometrics, pavement and bridge conditions are below standard. Currently, the mainline of I-94 is 6-lanes (three in each direction), there are incomplete acceleration/deceleration lanes, and some service drives cxist but they are not continuous. The DEIS states that traffic volumes are heavy during most daylight hours with some segments operating over capacity during peak periods. Under the No-Build scenario, most segments of I-94 would operate at LOS D or F in the year 2020 during the peak hours. It is clear that some action is needed in this area in order to improve capacity, safety, pavement and bridge conditions on I-94. The action is also needed to enhance local traffic circulation in the arca.

Threc alternatives are evaluated in detail in the DEIS: (1) the No-Build Alternative, (2) the Enhanced No-Build Alternative, and (3) the Build Altcrnative. The No-Build Alteruative would involve no construction on I-94 and would only include maintenance of the existing facility and replacement of bridges as they deteriorate. The Enhanced No Build Alternative would reconstruct the existing freeway and bridges, improve shoulders and ramps, construct auxiliary, acceleration and deccleration lanes while maintaining the freeway, interchanges and bridges. The Build Alternative would consist of addition of two driving lanes on the ll-94 mainline (one in each
direction), acceleration/deceleration lanes and three-lane continuous service drives on both sides of the interstate. The existing roadway and bridges would be reconstucted and space would be reserved in the median to accommodate future lane expansion or transit.
U.S. EPA has reviewed the DEIS and other associated documents. Our review has identified several issues that were not adequately addressed in the DEIS. These issues are in the areas of Scope of Analysis, Purpose and Need, Alternatives Analysis, Air Quality, Noisc, Pedestrian and Bioyclist Impacts, Costs, and Cumulative Impacts. Our detailed comments are provided in the enclosure titled: U.S. EPA Comments on the $1-94$ Rchabilitation Project Draft Linvironmental Impact Statemen (DErs)/Section $4(f)$ Evaluation, May 200l. Based on these comments, the U.S. EPA rates the DEIS as "EO-2." A copy of our rating criteria is enclosed.

Thank you for the opportunity to comment on this DEIS. We are always available to discuss these comments if you would find that useful. Please contact Sherly Kamke of my staff at 312-353-5794 for any questions or concerns that you would like for us to address.

Sincerely,

Kenneth A. Westake, Chief
Environmental Planning and Evaluation Branch
Office of Strategic Environmental Analysis

cc: Jeff Saxby, MDOT

Gerald Fulcher, MDEQ

U.S. EPA Comments on the I-94 Rehabilitation Project
Draft Environntental Impact Statement (DELS)/Section 4(O) Evaluntion
May 2001

Scope of Analysis

The proposed action would involve improvements to a 6.7 -mile portion of I-94 from I-96 on the west to Conner on the east yet the traffic study limits extend past this area to include additional segments on the east and west of this project. The DEIS makes a reference on page 3-5 to "a series of proposed projects to improve the transportation system in Detroit and southcast Michigan" and references that this project "is the first of other I-94 improvement projects in southeast Michigan." No other specific details are included in the DEIS. U.S. EPA sought additional information regarding other I-94 projects that were being contemplated. MDOT's Five-year Road and Bridge Program - Volume III 2001-2005 (p.81) indicates that the 1-94 project from I-96 to Connor Avenue is the first phase of a larger project extending from Wyoming Avenue in the city of Detroit to I-696 in Macomb County. The Build Alternative that is evaluated in detail in the DFIS makes more sense as part of an improvement program for a larger segment of I-94 than what is evaluated within this DEIS. Otherwise, the improvements to the mainline, auxiliary and service drive lanes will end at this project's termini, which has the potential to create bottlenecks at a point where the roadway capacity drastically decreases.

Due to the issues discussed above, we question whether the evaluation conducted in this DFIS meets the requirements specificd in the Federal Highway Administration (FIIWA) NEPA implementing regulations at Title 23 Code of Fercral Regulations (CFR) Part 771.111 (f). The regulations discuss what scope of analysis is appropriate in order to ensure a meaningful evaluation of alternatives and in order to avoid commitment to transportation inprovements before full evaluation. We have concerns related to how this project's scope meets the requirements for logical termini, independent utility and appropriate consideration of altenuatives for other foreseeable transportation improvements on [-94. We suggest that FHWA reconsider its termini points. We recommend that FIIWA and MDOT evaluate l-94 improvements using a tiered EIS process. The first tier would evaluate improvements on the 18 -mile segment of $1-94$ from Wyoming Avenue to 1-696 and then segment-specific EISs would ther off from that first tier EIS. This approach would allow for a broad consideration of improvements along the entire corridor.

Purpose and Need

The information presented in the DEIS clearly shows that there are problcms that need to be addressed in the I-94 Corridor from I-96 to Connor. The problems of deteriorating pavement and bridges, along with the lack of shoulders and substandard interchanges, are apparent. It is clearly prudent to address the need for system improvements at the same time infrestructure maintenance is addressed. We note that there is a long history of planning and major investment study work conducted in this area. We believe that it is impontant to draw on these previous studies wherever possible while recognizing changes that have occurred since those studies were conducted.

EPA concurs that there is a real need for improvements in the I-94 corridor. I lowever, as we have mentioned undes "Scope of Analysis" above, we question why MDOT and FIIWA have scoped the project as they have.

We have additional questions regarding statements made in DEIS regarding truck traffic on 1-94. We note that the Purposo and Need Section on page 2-12 states that Avernge Annual Daily Traffic (ANDT) is at $120,000-160,000$, and it is expected to grow by more than 25 percent by the year 2020. This growth docsn't inolude international border crossings and the associated amount of heavy-truck traffic, which is expected to grow at a rate three times faster than passenger vehicle volume. The DEIS mentions the North American Iirec Trade Agreement (NAFTA) and how international trade is increasingly inportant to Michigan's cconomy. However, there is no information in the DEIS that discussed how NAFTA has affected international traffic and what that might mean for the Detroit area. If the I-94 corridor is experiencing increasing traffic or will likely be experiencing increased traffic because of NAFTA, additional information should be provided in NEPA documentation reflecting this.

Similarly, the DEIS shows a location of the proposed intermodal freight facility in Figure 2-1, a figure depicting the Traffic Study, Project Limits and Intermodal Freight liacility. No other information is presented within the text of the DEIS to explain how the siting of an intermodal freight faclity may impact local, regional and international truck and rail traffic patterns. More information on the current and future projections for local, regional and international frcight traffic should be included in subscquent NEPA documentation

Alternatives Analysis

The DEIS evaluates a No-Build Alternative, an Enhanced No-Build Alternative and the Build Alternative. U.S. EPA views the Build Alternative as cọnsisting of five components: (1) Rebuild/enhance eapacity on existing 1-94 mainline with addition of shoulders and auxiliary lanes, (2) Interchange improvements (including acceleration/deceleration lanes), (3) Bridge replacements, (4) Service drive enhancements, and (5) Preservation of median space for future expansion.

The DEIS summarizes the process by which altematives were selected for further evahuation. Although the Alternatives section does an adequate job of describing why many highway design options were eliminated, it does not provide cnough of information to substantiate why transit alternatives were eliminated from consideration. It appears, bosed on information presented on page 4-15, that the only transit alternative that was evaluated is a bus alternative that would utilize Liigh Occupancy Vehicle (HOV) lancs. The HOV lane alternative was eliminated because the FIIWA guideline for a minimum threshold of 500 vehicles per hour per lane would not have been met. The rationale for the elimination of the HOV lane alternative stated "to optimize the benefits and be most effective, the HOV lanes would have to extend beyond the study limits of the project."

It isn't clear from the information presented in the DEIS what segment length was used in the HOV analysis. Also, it wasn't clear what traflic projections (current or design ycar [2020]) were used. The NEPA documentation should descrlbe in more detail what the basis was for ellminating this alternative from consideration.

Similarly, the DEIS does not provide an adequate discussion as to why the Build Alternative being proposed has the components that are being proposed. The lack of information regarding the need for reserve median space and three continuous service drives stands out as cxamples of where relevant information is lacking. Without Information specifying why 54.5 -feet of median space are needed and why three lanes of continuous serviee drive (two 12-foot lanes and one 16foot multi-use lane) are needed, questions will remain regarding what function the median space and the service drives will provide. We note that the DEIS makes several references to how the redcsign of I-94 would facilitate future transit options along I-94. According to the DEIS, the reserved space in the median, continuous scrvice drives and increased height of the bridges would all accommodate future transit use. U.S. EPA supporta efforts to accommodate transit in project design wherever possible. However, it isn't clear if there will actually be a transit component to this project. Without some specific tie-in to a transit vision or plan that utilizes this corrddor, it appcars just as likely, or possibly more likely, that the reserved median space and the multi-use lane of the continuous service drive will be used to provide additional highway eapacity.

As we have stated in our comments on the 1-375 Environmental Assessment comment letter, dated licbruary 12, 2001, we support comprehensive transportation planning for the Detroit acca that includes both highway and transit components. Thls comprehensive planning is the only way to ensure that appropriate linkages between the systems are planned for and potential conflicts are remedied. We very much support the Transit Visioning Process for the Detroit area, which is being led by the Southeast Mchigan Council of Governements (SEMCOG). We look for the visioning process to lead to viable transit projects that will benefit the region by increasing transportation choices for users and result in environmental benefits. In the case of this project, it would be prudent to not only accommodate transit scenarios involving I-94 that arise from the visioning process, but also to consider integrating transit components with highway improvements.

Since the level of scrvice goals would be more than adequately met by implementation of the Build Alternative [LOS B,C, D would be achieved and LOS D/E is usually the goal within an utban setting], an alternative that scalcs down one or more of the components (mainline, service drives and/or median) might be viable. We belicve there may be additional feasible alternatives that have not yet been evaluated that would meet project goals and objectives. The DELS states that several transit alternatives (modified bus service, bus rapid transit, and light rail) were retaincd as compatible with a practical alternative, but eliminated as a stand-alone alternative. No cvaluation was conducted of an alternative that included both highway and transit improvements. Wo would like to see additional build alternatives, including onc with a transit component, be evaluated in more detail.

Air Quality

Conformity Analysis - The DEIS commits to performing a Regional transportation conformity analysis following the selection of a recommended alternative. The conformity analysis should be performed before and included in the Final EIS.

Carhom Monoxide (CO) micrascale analysis - The U.S. EPA has identified three types of information that needs to be inctuded in the CO analysis write-up. The areas that require additional information disclosure are in the areas of. (1) fleet makeup, (2) background monitor, and (3) persistence factors.

The DEIS provided information on the makcup of vehicle type used in the microscale analysis. However, the DEIS did not provide information on how these values compare to those used in local area planning and the State Implementation Plan for the Detroit-Ann Arbor area. A short description how these values compare should be provided.

A key component of a Carbon Monoxide (CO) microscale analysis is the baekground concentration. The DEIS uses background coneentrations from the Livonia air monitoring station in the analysis. This monitor is part of the U.S. EPA approved monitoring network. However, the DEIS did not include a rationale as to why data from this monitor was used to establish background concentrations.
U.S. EPA guidance calls for the use of a 0.70 default factor to estimate 8 -hour concentrations from 1 -hour concentrations unless local air quality monitoring data is used. A description of how MDOT derived the persistence factor equal to 0.60 should be provided.

Air Toxics work - The U.S. EPA is cosponsoring a cooperative effort between Michigan Department of Environmental Quality and Wayne County Department of the Environment the Detroit Air Toxics Pilot Project, as part of its national air toxics monitoring program. The project is measuring levels of eighteen (18) air toxic compounds, including volatile organic compounds, semi-volatile compounds, carbonyl compounds and trace metals. There is one monitoring location that is near a high-traffic intersection, which will serve as a mobile source oriented site. The project officially started April 19, 2001. Results will be fortheoming from the project on a quarterly basis. Information about the program can be viewed at:
http;//wherw dec.state.mius/ado/eval/armipilot, html Information from this project should be referenced in subsequent NEPA documentation.

Noise

The DEIS provides little information regarding how the project would be phased in if the Build Nternative was selected for implementation. Plans for the phasing of the project may itself be the cause of significant noise and air quality issues especially if mainline traffic is detoured other local roads. The DEIS makes references to the service drives acting to reduce traffic disruption during
construction of the I-94 mainline. In the scoping document for this project, a reference is made to using the continuous service roads as detours during the construction of I-94. This would have the effect of routing a large amount of interstate traffic at the same level and just adjacent to neighborhoods that meet the definition of environmental justice communities. Noise and other impacts associated with this detour plan should be evaluated. Appropriate mitigation measures should be considered and implemented.

In the discussion of noise impacts, the DEIS discusses FHWA's June 12, 1995 revised guldance on traffic coise analysis. In that guidance, all State \ddagger lighway agencies were required to adopt written noise policies according to the revised FHWA guidance with respect to cost-per-residence criteria. Those criteria were used to provide a rationalc as to why noise walls were not required at two schools. Based on the information provided in the DEIS, it isn't elear if this is an appropriate use of this criteria. Subsequent NEPA documentation should address this point.

Pedestrian and Bicyclist Impacts

A statement was made on page $1-8$ of the DEIS that the Build alternative will improve pedestrian access. This is difficult to objectively assess because there is little data presented in the DEIS that discusses the existing pedestrian access. The discussion on pedestrian and bicyclist access topic is limited to page 2-14. The information presented indicates that sidewalks are present along existing service drives but the service drives are not continuous. Some of the pedestrian bridges (used by both pedestrians and bicyclists) are in disrepair. The DEIS did not present information regarding the pedestrian and bicycle access needs in the arca. The build alternative would combine velicular bridges with pedestrian bridges and would eliminate stand-alone pedestrian bridges. The DEIS did not cvaluate how these changes would impact pedestrian and bicycle activity in the area. Subsequent NEPA documentation should evaluate these impacts and other communty impacts in more detail.

Costs

Cost information is presented in the DEIS in a Table entitled "I-94 Rehabilitation Project Cost Estimates" on page 4-38. The table provides estimated costs for altematives broken done by construction, right-of-way, design and construction engineering and total. There is litile substantiation provided with these estimates. Without providing additional information to support the numbers shown in the table, it is difficult for the reader to compare alternatives on a very important variable. At no place in the DEIS was the matter of maintenance costs discussed. The project being cvaluated in this DEIS represents a large investment in highway infrastructure. It would be important to know whether there were signiticant differences in maintenance costs between the studied alternatives. We recommend that this type of information be included.

Cumulative Impacts

The DEIS includes a section on cumulative impacts starting on page 5-94. The section lists a number of transportation projects that werc recently completed or included in the SEMCOG's Transportation Improvement Program (TIP) and the MDOT Five Year Road and Bridge Program. The impacts associated with these projects all appear to be important to include in an cumulative impact analysis. The DEIS does not really include any evidence that a cumulative impact analysis looking at both benefits and adverse impacts was conducted. The cumulative impact section is written as a subjective summary. No analysis has been provided to support the claim that noise, visual quality, economy and pedestrian mobility would be improved or that the cumulative beneficial inpacts to the cconomy and social environment would far exceed the adverse impacts.

Other projects on 1-94 and other transportation projects in the area and their impacts should be included in an analysis in the DFLS. Resources and impacts of particular concern to U.S. EPA include: Air Quality, Noise, Impacts to Environmental Justice comraunities, and land use changes.

Introduction

This document serves as an addendum to the "I-94 Detroit_Existing Paramics Speeds_Response to FHWA" memo which was sent to FHWA on September 13, 2018. The memo documented the history of FHWA comments and HNTB responses regarding existing Paramics model speed calibration, including a revised speed validation comparison to two-month field speed averages from the HERE database. The contents of the memo were discussed with FHWA in a meeting on September 14, 2018. In that meeting FHWA asked about the availability of speed data specific to the days that volume data was collected as well as the variability of the two-month speed data used for model speed validation. FHWA also indicated that if other historical speed data was available from MDOT that it could be used to cross reference and validate the two-month speed data from the HERE database. The purpose of this addendum is to address FHWA's questions on the one-day and two-month speed data.

Speed Data

HNTB reviewed the "one-day" speed data for the dates when volume data was collected for the corridor. Due to the time of year and the data collection method (aerial photography), AM and PM peak period volume data was not collected on the same day. AM peak period data was collected on November 5, 2014 and the PM peak period data was collected on October 8, 2014. A review of the oneday speeds found that about 40% of the hourly analysis period data (7-9AM and 4-6PM) was incomplete and therefore was not viable for model validation purposes.

HNTB also reviewed the two-month speed data to determine the variability of average weekday (Tuesday, Wednesday, and Thursday) speeds in October and November 2014. Data from Thursday, November $27^{\text {th }}, 2014$ (Thanksgiving) was not included. The two-month speed validation comparison from the September $13^{\text {th }}$ memo has been updated to include the two-month speed range for each segment (Table 1). The two-month speed ranges vary considerably for all segments and hours in both directions of the l-94 corridor. Of the twelve segments that did not meet the speed validation criteria (within 10 mph) for all directions and hours, half are within the two-month speed range including two (\#5 and \#10) of four segments on I-94 EB from 5-6PM. An additional segment (\#11) on I-94 EB during the $5-6 \mathrm{PM}$ hour is within 2 mph of the upper end of the two-month speed range.

Conclusion

The one-day speed data from the HERE database is incomplete for the days that volume data was collected and therefore comparing model speeds to the one-day speed data is not reasonable. As noted in previous documentation, at least 87% of hourly directional segment model speeds are within the 10 mph validation criteria of the two-month average field speed except for I-94 EB during the 5-6PM hour (73\%). However, two of the four segments (\#5 and \#10) outside of the 10 mph range are within the range of speeds reported for Tuesdays, Wednesdays, and Thursdays from October to November 2014 in that hour. Therefore, the model can be said to replicate conditions that actually exist in the field.

Table 1 - Existing Paramics Model: Updated Two-Month Speed Validation Summary

Notes:
Model speed is calculated using the weighted average of model link lengths within each segment
Threshold = Average model speed within 10 mph of 2 Month average speed
2 Month Range = Tues-Thurs from October-November 2014 (excluding Thanksgiving)

Threshold Summary

Dir	$7-8$ AM	$8-9$ AM	4-5 PM	$5-6$ PM						
$1-94$ EB	87%	87%	93%	-736		Dir	$7-8$ AM	8.9 AM	4-5 PM	$5-6$ PM
:---	:---:	:---:	:---:	:---:						
$1-94$ EB	87%	87%	93%	73%						
$1-94$ WB	87%	93%	100%	100%						

Introduction

Technical Memo No. 6 (TM 6) documented the calibration and validation of the existing (2014) I-94 corridor Paramics AM and PM peak period models. The peak period models simulate 6-10AM and 27PM conditions, which captures the buildup and dissipation of traffic congestion within the I-94 corridor for a typical weekday. Two hours in each model period (7-9AM and 4-6PM) represent the analysis periods. Validation statistics for model volumes and speeds were reported for the I-94 corridor for each hour of the analysis period. Field speed data was collected from the Nokia HERE speed database for October-November 2014 weekdays. The speed data was summarized for both the specific day that volume data was collected for the peak periods and the two-month average.

TM 6 indicated that model speeds were validated against a combination of the one-day and two-month field speed data with the goal to maximize the number of segments that are within 10 mph of the field speed range. The speed validation statistics (TM 6, Tables 3-6) were summarized as ranges to help focus on the day to day variability of the field speeds. Reported directional model speeds were calculated using weighted averages of the number of links included within each speed range. FHWA reviewed TM 6 and provided comments on the speed validation criteria and results (August 9 ${ }^{\text {th }}, 2018$). FHWA's main concern was that the models should not just maximize the number of links within 10 mph of the field speed range, but rather achieve speeds within 10 mph for 85% of all model links. The 85% threshold was taken from Florida DOT and Oregon DOT standards.

To address FHWA's comment, HNTB calculated the total number of links within 10 mph of the field speed range for both analysis periods using the same reported model speed data. As indicated in Table 1, both the AM and PM peak periods met the 85% speed validation criteria. A response from HNTB along with this data was provided to FHWA on August 13 ${ }^{\text {th }}, 2018$.

Table 1 - Existing Analysis Period Link-Based Speed Validation Results

Corridor	Analysis Period	
	AM	PM
I-94	86%	85%

FHWA provided follow up comments to the August $13^{\text {th }}$ response from HNTB (August $30^{\text {th }}, 2018$), which indicated that concerns remained with the model speed calibration as the analysis period averages barely exceeded the 85% validation criteria. This indicated that issues could remain in the model where directional and hourly speed differences could be masked by other directions/hours with potentially easier calibration if they have lesser volumes and/or greater average speeds. As such, FHWA requested that the model speed validation should be reported by segment direction and hour, and compared against the 85% validation criteria.

HNTB summarized the existing model speed data as requested by FHWA based on the segmentation of the HERE field data. HERE segmentation does not always follow typical corridor segmentation guidelines (i.e. between consecutive interchange ramps, etc.) and sometimes includes multiple ramps or
interchanges. Model links were grouped to approximate the HERE segmentation within the existing Paramics model network. Segmentation of the I-94 corridor is shown in Table 3. Model speed data was reported based on the average of 7 seeds and weighted based on the link lengths contained within each HERE segment. For the segment comparison, HNTB only included the two-month field speed average due to the variability of day to day field speeds at some locations. The two-month average speeds are more representative of the average weekday corridor condition that the model represents.

As reported in Table 2 below, the segment-based model speeds meet the 85% validation criteria for both directions and analysis hours, except for I-94 EB from 5-6PM (73\%). Table 3 provides a more detailed summary of model and two-month average speeds by segment for each direction and hour.

Table 2-Existing Analysis Hours Segment-Based Speed Validation Results

Dir	7-8 AM	8-9 AM	4-5 PM	5-6 PM
I-94 EB	87%	87%	93%	73%
I-94 WB	87%	93%	100%	100%
Total	88%		92%	

The following section discusses the factors preventing model speeds from meeting the speed validation criteria along I-94 EB during the 5-6PM hour.

Modeling

Along I-94 EB during the PM peak period, traffic congestion originates near the I-75 interchange, more specifically at the system ramp entrance, due to the lane configuration between I-75 and the Chene St exit ramp. The I-75 system ramps from the north and south to the east merge into one lane near the I94 mainline gore and create an auxiliary lane between the l-75 interchange and the Chene St exit ramp (four lanes total). I-94 is three lanes upstream and downstream of the I-75 entrance ramp. Almost all traffic from I-75 to the east continues on I-94 EB and 640-740 vehicles exit to Chene St during the PM peak period. As a result, more than 2,600 vehicles per hour are changing lanes in this area from 4-6PM, which is the main cause of turbulence and resulting flow breakdown. The segment nearest this area is \#8 in Table $\mathbf{3}$ (two-month average $=18.8 \mathrm{mph}$ from 5-6PM).

Congestion on I-94 EB between I-75 and Chene St due to weaving propagates upstream and impacts the I-94 EB mainline as well as adjacent major (M10 and I-96) and service interchanges, which is reflected in the two-month average field speeds reported for segments \#2-8 (15.9-29.4 mph from 5-6PM). Outside of segment \#5 (I-94 EB between Trumbull Ave and the M10 system interchange), the existing PM peak period model accurately reflects upstream slow speeds and congestion due to the operational issues between I-75 and Chene St. Local calibration of the existing PM peak model to match the upstream speeds required extensive testing of incremental adjustments to various local model parameters on I-94 at and near the I-75 interchange. The local calibration process determined that there was one set of parameters that resulted in the appropriate amount of upstream congestion on I-94 in the hours preceding 5PM, but also did not create unrealistic operations at the I-75, M10, or I-96 interchanges or
mainlines due to I-94 congestion, as well as releasing all I-94 demand within the model period (i.e. no unmet demand). Local model parameters were applied uniformly to all hours within the model period.

However, with the local calibration parameters, average model speeds are on the slow end of the acceptable 10 mph speed range for segments \#6-8. As a result, model throughput is reduced on I-94 EB at the I-75 interchange (but still within the acceptable GEH threshold), which limits the formation of downstream mainline congestion (segments \#9-11) as traffic recovers to speeds faster than the twomonth field data suggests. Segments \#9-11 include portions of I-94 EB between the I-75 system interchange and the Van Dyke Ave (M53) service interchange. This encompasses a reverse curve between Mt Elliott St and Van Dyke Ave with narrow shoulders and a retaining wall adjacent to the outside shoulder, which may influence field speeds through this area.

Conclusion

The existing I-94 Paramics models meet the additional FHWA speed validation request (85% of segments within 10 mph by direction and hour), except for I-94 EB during the 5-6PM hour (73% of segments within 10 mph of field data). Local calibration on I-94, particularly at and near the I-75 interchange, was complicated by other mainlines ($\mathrm{I}-75, \mathrm{M} 10$, and $\mathrm{I}-96$) which field data did not suggest were affected by I 94 congestion. Difficulties with calibration of I-94 upstream of the I-75 interchange resulted in faster downstream model speeds (segments \#9-11) than the two-month average.

Recommendation

Model parameters are calibrated to try to match field speed data across all analysis hours. While some of the modeled speeds on I-94 EB from 5-6PM are less than the 85% threshold requested by FHWA, on an hourly basis at least 87% of segments in both directions are within 10 mph . Including both directions and both analysis periods, the modeled results exceed 88% of field targets. The 5-6PM field speeds for I 94 EB follow the same trend as 4-5PM from west to east, but the magnitude of speeds is slightly less overall which makes it harder to calibrate to speeds in both hours. Any adjustments to the existing Paramics models to meet the 85% speed validation criteria for I-94 EB from 5-6PM in this one area may have unintended temporal model effects, particularly during the 4-5PM hour, due to the complicated nature of the network and could cause other segments in either PM peak hour to not be within the acceptable 10 mph range. Modifying local parameters only in the 5-6PM hour to better match field speed data in that hour implies that driver behavior in the corridor is different for only one hour (5-6PM) in comparison to the other hours (2-5PM, 6-7PM) of a single analysis period.

Additionally, the proposed alternative addresses the existing operational issue on I-94 at the I-75 interchange based on Highway Capacity Software analysis and the Build scenario Paramics models. Any existing model adjustments carried forward to the future models would likely have little to no effect on future year conditions under either the No Build or Build scenarios. As a result, HNTB recommends that no adjustments are made to the existing Paramics models and documentation related to the model speed calibration/validation discussion between HNTB, MDOT, and FHWA be included in an update to TM 6 or a supplemental memo.

Table 3 - Existing Paramics Model: Revised Speed Validation Summary

Fwy/Dir	$\begin{gathered} \text { Segment } \\ \# \end{gathered}$	Location	7-8 AM			8-9 AM			4-5 PM			5-6 PM		
			Avg Speed (mph)		Meet Threshold?									
			Model	2 Mon										
I-94 EB	1	West of I-96	40.5	39.8	\checkmark	25.6	29.8	\checkmark	43.2	40.5	\checkmark	32.7	42.6	\downarrow
	2	Grand River Ave Exit - 1-96 System Ramps	18.3	31.2	\%	23.8	22.1	\checkmark	32.9	28.3	\checkmark	35.5	29.4	\checkmark
	3	1-96 System Ramps - Linwood St Entr Ramp	28.6	31.7	\downarrow	28.5	27.7	\checkmark	26.4	23.6	\downarrow	20.7	23.3	\downarrow
	4	Linwood St Entr Ramp - 14th St Entr Ramp	36.2	39.5	\downarrow	36.0	37.2	\downarrow	25.5	28.2	\downarrow	18.0	25.4	\downarrow
	5	Trumbull Ave Exit Ramp - M10 System Ramps	57.3	47.3	\checkmark	57.2	45.3	8	23.8	29.2	\downarrow	13.7	26.6	$\ddot{8}$
	6	Thru M10 Interchange	55.6	51.3	\downarrow	49.0	50.6	\checkmark	21.4	18.2	\checkmark	10.8	15.9	\checkmark
	7	John R St Exit Ramp -1-75 System Ramps	52.0	46.4	\checkmark	50.4	45.8	\checkmark	15.8	21.0	\checkmark	9.3	18.5	\checkmark
	8	Beaubien St Entr - 1-75 System Ramps	55.3	50.1	\checkmark	55.7	50.6	\checkmark	13.7	23.3	\checkmark	10.8	18.8	8
	9	1-75 System Ramps - Chene St Entr Ramp	58.1	57.2	\checkmark	58.3	57.3	\downarrow	48.1	22.7	8	56.3	19.5	\%
	10	Chene St Entr Ramp - Mt Elliott St Entr Ramp	53.1	58.2	\checkmark	54.3	58.8	\downarrow	35.0	31.8	\checkmark	42.7	25.2	x
	11	Van Dyke Ave (M53) Exit Ramp - Van Dyke Ave (M53) Entr Ramp	45.8	57.8	8	45.8	57.9	8	42.5	33.4	-	43.8	27.7	发
	12	Gratiot Ave (M3) Exit Ramp - Gratiot Ave (M3) Entr Ramp	54.0	59.3	\checkmark	54.8	60.0	\downarrow	39.7	34.7	\downarrow	38.2	28.3	\downarrow
	13	French Rd Exit Ramp - French Rd Entr Ramp	53.3	60.0	\checkmark	53.6	60.1	\checkmark	44.3	34.7	\checkmark	35.8	31.1	\checkmark
	14	Conner St Exit Ramp - Conner St Entr Ramp	55.2	58.8	\checkmark	55.8	58.8	\checkmark	41.3	36.2	\checkmark	42.6	35.7	\checkmark
	15	East of Conner St	56.0	60.2	\checkmark	56.1	61.3	\checkmark	55.4	46.6	\downarrow	55.2	45.2	\checkmark

Fwy/Dir	Segment\#	Location	7-8 AM			8-9 AM			4-5 PM			5-6 PM		
			Avg Speed (mph)		Meet Threshold?	Avg Speed (mph)		Meet Threshold?	Avg Speed (mph)		Meet Threshold?	Avg Speed (mph)		Meet Threshold?
			Model	2 Mon										
I-94 WB	16	East of Conner St	40.5	34.1	\downarrow	48.5	31.0	\&	55.2	59.3	\checkmark	54.5	58.3	\checkmark
	17	Conner St Exit Ramp - Conner St Entr Ramp	35.8	36.1	\checkmark	33.3	34.3	\checkmark	54.5	58.0	\checkmark	55.1	56.3	\checkmark
	18	Conner St Entr Ramp - French St Entr Ramp	49.0	36.4	8	41.3	34.1	\checkmark	57.7	56.7	\checkmark	57.8	56.0	\checkmark
	19	French St Entr Ramp - Gratiot Ave (M3) Exit Ramp	43.6	36.5	\checkmark	37.7	34.4	\checkmark	54.6	55.8	\checkmark	55.3	55.1	\checkmark
	20	Van Dyke Ave (M53) Exit Ramp - Van Dyke Ave (M53) Entr Ramp	40.0	39.3	\checkmark	34.4	37.5	\checkmark	53.0	54.9	\checkmark	53.3	53.9	\checkmark
	21	Mt Elliott St Exit Ramp - Mt Elliott St Entr Ramp	39.1	42.8	\checkmark	30.1	39.3	\checkmark	53.4	54.5	\checkmark	53.5	53.8	\checkmark
	22	Mt Elliott St Entr Ramp - Chene St Entr Ramp	38.7	46.0	\checkmark	36.3	42.4	\checkmark	56.2	51.6	\checkmark	55.4	53.4	\checkmark
	23	1-75 System Ramps - Beaubien St Exit Ramp	41.6	50.1	\checkmark	45.2	48.8	\checkmark	50.4	41.5	\checkmark	45.6	44.9	\checkmark
	24	Beaubien St Exit Ramp - John R St Entr Ramp	42.8	47.9	\checkmark	50.0	48.6	\checkmark	37.9	28.3	\checkmark	35.0	28.8	\checkmark
	25	Thru M10 Interchange	50.3	54.3	\checkmark	51.4	53.3	\%	16.5	24.6	\checkmark	20.0	22.0	\checkmark
	26	M10 System Ramps - Trumbull Ave Entr Ramp	50.6	57.7	\checkmark	51.1	56.8	\checkmark	17.2	22.3	\checkmark	18.3	21.1	\checkmark
	27	Trumbull Ave Entr Ramp - Linwood St Exit Ramp	55.5	56.8	\checkmark	56.3	55.6	\checkmark	40.3	34.6	\checkmark	39.2	32.3	\checkmark
	28	Linwood St Exit Ramp - 1-96 System Ramps	48.5	59.2	8	49.5	56.9	\checkmark	41.5	45.8	\checkmark	40.6	45.7	\checkmark
	29	Thru I-96 Interchange	57.8	58.4	\checkmark	58.0	57.2	\checkmark	59.4	51.1	\checkmark	59.2	49.3	d
	30	West of I-96	57.8	60.1	\downarrow	57.5	58.7	\checkmark	57.6	54.3	\checkmark	57.8	53.6	\checkmark
Notes:										Dir	7-8 AM	8-9 AM	4-5 PM	5-6 PM
Model speed is calculated using the weighted average of model link lengths within each segment										1-94 EB	87\%	87\%	93\%	73%
Threshold = Average model speed within 10 mph of 2 Month average speed										1-94 WB	87\%	93\%	100\%	100\%
										Total	88\%		92\%	

Introduction

As part of Federal Highway Administration (FHWA) review of the Interstate 94 (I-94) Interstate Access Change Request (IACR) report, concerns were raised by FHWA Resource Center staff regarding future weaving operations between the M10 and Brush Street interchanges. FHWA requested the project team to analyze the lane utilization, speeds and gaps of vehicles within the weaving area, as well as upstream and downstream of the entrance and exit ramps.

HNTB utilized the Paramics model representing the preferred design alternative to measure the potential operations. Through a combination of a dense pattern of vehicle detection and vehicle trajectory data, the following is a summary of seven runs of the peak period models which is in line with the methodology other modeling analysis.

Summary

The summary of operations below is based on observations of the Paramics microsimulation model and the tables of results included in this document.

NOTE: As referenced below, Lane 1 is the median lane and increases to the right shoulder.
AM peak period summary:

Speeds	Notes
EB	Generally, exceed 50 mph with only a couple spot locations/hours with speeds less than 50 mph
	Nothing that would suggest excessive turbulence or friction on adjacent lanes due to lane changing
WB	Speeds in lanes 4-6 near the western end of the analysis area range between 38 and 53 mph (6-9AM) as there is a significant amount of I-75 traffic merging into the I-94 mainline and then trying to change lanes to continue on I-94 WB (rather than exit to M10). This creates some turbulence and congestion between I-75 and Brush St. ${ }^{1}$
	Lanes 4 and 5 downstream of the Brush St entrance average $46+$ mph during all hours
	Speeds recover to 50+ mph approaching the M10 interchange and downstream on I-94 WB
Gaps	Notes
EB	Lane 3 (center left) upstream of M10 entrance has gaps less than 2 sec due to increased lane utilization
	Lanes 5 and 6 (right and aux) have gaps of $2.5+$ sec which should be acceptable for Brush St/M10 weaving vehicles
WB	Lane 5 (right) upstream of Brush St has significant gaps due to most I-75 entrance ramp traffic moving left to continue on I-94 WB. This allows for more than acceptable gaps for Brush St entrance ramp traffic to merge onto the mainline.

[^3]| | Lane 4 (center right) has gaps of about 1 sec which could limit
 opportunities for Brush traffic to change lanes to the left.
 However, based on the average speeds there is little turbulence
 in this area and therefore lane changing does not seem to be an
 issue. |
| :--- | :--- |
| Lane Utilization | Notes |
| EB | M10 interchange. Based on the trajectory file most of the traffic
 in this lane is destined for I-75. This volume tends to more
 evenly distribute itself between lanes 3-5 downstream of Brush
 St. |
| | Lane 5 has less than 10\% of the volume upstream of Brush St
 due to traffic from I-75 shifting to the left to continue on I-94
 WB |
| | Lane 4 has the most traffic between Brush St and M10 (39+\%)
 due to mainline traffic setting up for the exit to M10 |
| | Traffic is more evenly distributed downstream of the M10 gore
 with lane 1 having the least amount of traffic (12-14\%). |

PM peak period summary:

Speeds	Notes
EB	Similar to the AM peak period, speeds exceed 50 mph with only a couple spot locations/hours with speeds less than 50 mph
	Little to no turbulence is observed due to lane changing
WB	Speeds exceed 50 mph during all hours as there is less weaving/lane changing in comparison the AM peak period
	Little to no congestion is observed
Gaps	Notes
EB	Lane 3 upstream of M10 entrance has gaps of about 1.5 sec due to I-75 lane utilization
	Lanes 5 and 6 have gaps of more than 3.5 sec which allows for smooth lane changing between Brush St and M10 weaving vehicles
WB	Lane 5 upstream of Brush St has gaps of more than 12 sec due to I-75 entrance ramp traffic merging left to continue on I-94 WB, which allows for acceptable gaps for Brush St traffic
	Lane 4 has gaps of more than 1.5 sec which may limit opportunities for Brush traffic to merge left, similar to the AM peak period. However, based on the average speeds there is little to no congestion in this area and so Brush St traffic can still change lanes prior to the M10 interchange.

Lane Utilization	Notes
EB	Similar to the AM peak period, Lane 3 has more than 45% of traffic upstream of the M10 interchange. Based on the trajectory file, the majority of traffic in this lane is destined for I75 and traffic tends to more evenly distribute to the right lanes downstream of Brush St.
WB	Lane 5 has less than 6\% of vehicles upstream of Brush St due to I-75 traffic shifting to the left to continue on I-94 WB
	Lane 4 has 30-34\% of traffic between Brush St and M10 due to mainline traffic setting up for the exit to the M10 interchange
	Traffic is shifted to the left lanes downstream of the M10 interchange exit. Lane 1 has less than 10% of the volume as traffic is avoiding the right lane further downstream due to the M10 entrance ramp.

Conclusion

The findings indicate that there may be some turbulence in the design year near the Brush St interchange in both directions (particularly during the AM peak period), but it is not expected to decrease operations to unacceptable conditions. Operations near Brush St are mostly controlled by I-75 and M10 weaving traffic. AM peak period speeds in the right most lanes in each direction are expected to exceed 46 mph near the Brush St ramps. I-94 WB gaps in Lane 4 (center right) are expected to be tight between vehicles (about 1 sec) during the AM peak period due to the amount of lane changing due to the M10 interchange. Utilization of the center right lane in each direction is expected to be heavy during the peak periods.

7-8 AM (Analysis Hour)

8-9 AM (Analysis Hour)

9-10 AM (Shoulder Hour)

Lane	4				4					\rightarrow				$870 \mathrm{ft} \longrightarrow$					4				1000 ft					\rightarrow
	Detector - Speed (mph)																											
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
Left (1)	61	61	61	62	63	63	63	63	63	64	63	64	63	65	65	65	65	65	64	65	65	65	65	65	65	65	65	65
2	56	56	55	56	55	57	58	59	60	60	60	61	60	62	63	64	65	65	63	64	65	64	64	64	64	64	64	64
3	55	54	54	52	53	54	54	55	55	55	55	56	56	58	59	60	61	61	60	61	61	61	60	60	60	60	60	60
4	51	51	51	50	51	51	51	51	51	50	50	54	51	53	54	55	56	56	55	56	57	57	56	56	56	56	56	56
5											59	55	51	51	52	52	53	53	54	56	56	56	56	56	56	55	55	54
Right (6)											56	55	53	53	53	54	53	51	59	55	54	53	52	52	51	51	51	50

Legend	
Color	Speed Range (mph)
	$0-30 \mathrm{mph}$
	$30-40 \mathrm{mph}$
	$40-50 \mathrm{mph}$
	$50-55 \mathrm{mph}$
	$55+\mathrm{mph}$

7-8 AM (Analysis Hour)

Legend	
Color	Speed Range (mph)
	$0-30 \mathrm{mph}$
	$30-40 \mathrm{mph}$
	$40-50 \mathrm{mph}$
	$50-55 \mathrm{mph}$
	$55+\mathrm{mph}$

7-8 AM (Analysis Hour)

Lane	$1000 \mathrm{ft} \longrightarrow$										$\longleftarrow<870 \mathrm{ft} \longrightarrow$								4				1000 ft		\rightarrow			
	Detector - Gap (sec)																											
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
Left (1)	6.1	6.6	7.7	8.6	8.6	8.6	8.6	8.6	8.6	8.6	9.3	10.0	10.2	10.4	10.5	10.5	10.5	10.5	10.6	10.8	11.1	11.2	11.3	11.4	11.4	11.5	11.5	11.6
2	3.1	3.2	3.5	4.2	4.0	4.0	4.0	4.0	4.0	4.0	4.2	4.6	5.0	5.2	5.4	5.5	5.5	5.5	5.7	5.8	6.3	6.6	6.9	7.1	7.3	7.5	7.7	7.8
3	1.5	1.5	1.3	1.2	1.2	1.2	1.3	1.3	1.3	1.3	1.4	1.7	1.8	1.9	1.9	2.0	2.0	2.0	2.1	2.2	2.4	2.5	2.6	2.8	2.9	3.0	3.1	3.2
4	3.9	3.9	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.3	2.9	2.7	3.0	3.1	3.1	3.2	3.3	3.4	3.1	2.7	2.5	2.4	2.4	2.3	2.3	2.3	2.3
5											5.6	3.1	2.8	2.8	2.7	2.6	2.6	2.5	2.6	2.8	2.7	2.6	2.5	2.4	2.3	2.3	2.2	2.1
Right (6)											11.6	9.4	8.3	7.0	6.5	6.3	6.1	6.0	23.9	11.8	12.8	13.2	13.7	14.0	14.2	14.4	14.4	14.5

8-9 AM (Analysis Hour)

9-10 AM (Shoulder Hour)

Legend	
Color	Gap Range (sec)
	$0-1 \mathrm{sec}$
	$1-2 \mathrm{sec}$
	$2-3 \mathrm{sec}$
	$3-5 \mathrm{sec}$
	$5+\mathrm{sec}$

7-8 AM (Analysis Hour)

8-9 AM (Analysis Hour)

Lane	4				100					\rightarrow	4			ft		\rightarrow		350 f		4									\rightarrow
	Detector - Gap (sec)																												
	57	56	55	54	53	52	51	50	49	48	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32	31	30	29
Right (6)																												>100	>100
5											8.6	8.6	8.6	8.5	8.5	8.7	8.7	8.7	8.7	9.6	9.1	8.7	8.1	7.3	6.9	6.1	7.2	7.5	6.6
4	5.8	5.2	4.7	3.9	3.4	3.3	3.2	3.2	3.1	2.2	0.9	0.9	0.9	0.9	0.9	0.9	0.9	1.0	1.0	1.0	1.0	1.1	1.1	1.2	1.2	1.3	1.3	1.3	1.4
3	1.8	1.9	1.9	2.2	2.4	2.4	2.5	2.5	2.5	3.4	3.4	3.4	3.4	3.3	3.3	3.2	3.1	3.1	3.0	3.0	2.9	2.7	2.6	2.5	2.3	2.2	2.1	2.2	2.1
2	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.6	2.6	2.6	2.5	2.5	2.4	2.5	2.4
Left (1)	2.6	2.5	2.5	2.5	2.5	2.6	2.5	2.5	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.5	2.5	2.5	2.5

9-10 AM (Shoulder Hour)

Legend	
Color	Gap Range (sec)
	$0-1 \mathrm{sec}$
	$1-2 \mathrm{sec}$
	$2-3 \mathrm{sec}$
	$3-5 \mathrm{sec}$
	$5+\mathrm{sec}$

7-8 AM (Analysis Hour)

Lane											\longleftarrow - $870 \mathrm{ft} \longrightarrow$								4				1000 ft		\rightarrow			
	Detector - Lane Utilization (\%)																											
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
Left (1)	13\%	13\%	10\%	9\%	9\%	9\%	9\%	9\%	9\%	9\%	7\%	7\%	6\%	6\%	6\%	6\%	7\%	5\%	6\%	7\%	6\%	7\%	7\%	6\%	6\%	6\%	7\%	6\%
2	24\%	23\%	22\%	18\%	19\%	19\%	19\%	19\%	19\%	19\%	16\%	14\%	13\%	12\%	12\%	12\%	12\%	12\%	13\%	12\%	11\%	11\%	10\%	10\%	10\%	10\%	9\%	9\%
3	44\%	45\%	48\%	53\%	52\%	52\%	52\%	52\%	52\%	52\%	42\%	33\%	32\%	31\%	30\%	30\%	29\%	29\%	32\%	30\%	28\%	26\%	25\%	24\%	23\%	23\%	22\%	21\%
4	19\%	19\%	20\%	20\%	20\%	20\%	20\%	20\%	20\%	20\%	16\%	20\%	21\%	20\%	20\%	19\%	19\%	19\%	20\%	22\%	25\%	26\%	27\%	28\%	28\%	28\%	28\%	29\%
5											12\%	19\%	21\%	22\%	22\%	23\%	23\%	24\%	26\%	23\%	24\%	25\%	26\%	27\%	28\%	28\%	29\%	30\%
Right (6)											7\%	7\%	7\%	9\%	10\%	10\%	10\%	11\%	3\%	6\%	6\%	5\%	5\%	5\%	5\%	5\%	5\%	5\%

8-9 AM (Analysis Hour)

9-10 AM (Shoulder Hour)

Legend	
Color	Lane Utilization (\%)
	$50+\%$
	$35-50 \%$
	$25-35 \%$
	$10-25 \%$
	$0-10 \%$

7-8 AM (Analysis Hour)

8-9 AM (Analysis Hour)

Lane	4										4		$840 \mathrm{ft} \longrightarrow$				$\longleftarrow 350 \mathrm{ft} \rightarrow$							1000 ft			\rightarrow		
	Detector - Lane Utilization (\%)																												
	57	56	55	54	53	52	51	50	49	48	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32	31	30	29
Right (6)																												<1\%	<1\%
5											6\%	6\%	6\%	6\%	6\%	6\%	6\%	6\%	6\%	5\%	6\%	6\%	7\%	7\%	8\%	8\%	7\%	7\%	8\%
4	12\%	13\%	15\%	18\%	20\%	21\%	21\%	21\%	22\%	28\%	42\%	42\%	42\%	42\%	41\%	41\%	41\%	40\%	40\%	40\%	39\%	38\%	37\%	35\%	33\%	31\%	31\%	31\%	30\%
3	36\%	35\%	33\%	31\%	28\%	28\%	27\%	27\%	27\%	20\%	15\%	15\%	15\%	15\%	15\%	15\%	16\%	16\%	16\%	17\%	17\%	18\%	19\%	19\%	21\%	22\%	22\%	22\%	22\%
2	25\%	25\%	25\%	25\%	25\%	25\%	25\%	25\%	25\%	25\%	18\%	18\%	18\%	18\%	18\%	18\%	18\%	18\%	18\%	19\%	19\%	19\%	19\%	19\%	20\%	20\%	20\%	20\%	20\%
Left (1)	27\%	27\%	27\%	26\%	27\%	26\%	27\%	27\%	26\%	27\%	19\%	19\%	19\%	19\%	20\%	20\%	19\%	20\%	20\%	19\%	19\%	19\%	18\%	20\%	18\%	19\%	20\%	20\%	20\%

9-10 AM (Shoulder Hour)

Legend	
Color	Lane Utilization (\%)
	$50+\%$
	$35-50 \%$
	$25-35 \%$
	$10-25 \%$
	$0-10 \%$

3-4 PM (Shoulder Hour)

4-5 PM (Analysis Hour)

Lane	1000 ft													$870 \mathrm{ft} \longrightarrow$					4				$1000 \mathrm{ft} \longrightarrow$					
	Detector - Speed (mph)																											
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
Left (1)	61	61	61	62	62	62	63	63	63	63	62	63	63	64	65	65	65	65	63	65	65	65	65	64	64	64	64	64
2	56	56	55	55	55	57	58	59	59	60	59	60	60	62	63	64	64	64	63	64	64	64	64	63	63	63	63	63
3	54	53	53	51	53	53	54	54	55	55	54	55	55	57	58	59	60	60	59	59	60	60	60	60	60	59	59	59
4	52	52	52	52	52	52	52	52	52	52	51	54	52	53	54	55	56	57	56	57	57	57	57	57	57	57	57	57
5											60	56	52	53	53	54	55	55	55	56	57	57	57	56	56	56	56	56
Right (6)											55	54	52	52	52	52	52	50	59	59	59	58	57	55	54	53	53	52

5-6 PM (Analysis Hour)

Lane	4				1000									$870 \mathrm{ft} \longrightarrow$					4				1000 ft		ft	\rightarrow		
	Detector - Speed (mph)																											
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
Left (1)	63	63	64	63	64	64	64	64	64	64	63	64	63	65	65	66	66	65	64	65	65	65	65	65	65	65	65	65
2	59	58	58	58	58	59	60	60	61	61	60	61	61	63	64	64	64	64	63	64	64	64	64	64	64	64	63	63
3	56	56	55	54	55	55	56	56	56	56	55	57	57	58	59	60	60	61	59	60	60	60	60	60	60	60	60	60
4	53	53	53	53	53	53	53	53	53	53	52	56	53	54	55	56	56	57	56	57	57	57	57	58	57	57	57	57
5											61	58	54	54	55	55	55	56	56	57	57	57	57	57	57	57	57	57
Right (6)											54	54	52	52	52	52	51	49	59	59	59	58	56	55	54	53	53	52

Legend	
Color	Speed Range ($\mathbf{m p h}$)
	$0-30 \mathrm{mph}$
	$30-40 \mathrm{mph}$
	$40-50 \mathrm{mph}$
	$50-55 \mathrm{mph}$
	$55+\mathrm{mph}$

3-4 PM (Shoulder Hour)

5-6 PM (Analysis Hour)

6-7 PM (Shoulder Hour)

Legend	
Color	Speed Range (mph)
	$0-30 \mathrm{mph}$
	$30-40 \mathrm{mph}$
	$40-50 \mathrm{mph}$
	$50-55 \mathrm{mph}$
	$55+\mathrm{mph}$

3-4 PM (Shoulder Hour)

Lane	$1000 \mathrm{ft} \longrightarrow$										\longleftarrow - $870 \mathrm{ft} \longrightarrow$								4				1000 ft		\rightarrow			
	Detector - Gap (sec)																											
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
Left (1)	5.8	6.1	6.6	7.1	7.0	7.0	7.1	7.1	7.1	7.1	7.3	7.6	7.6	7.7	7.7	7.7	7.7	7.7	7.7	7.8	7.9	8.0	8.0	8.0	8.1	8.1	8.1	8.1
2	3.2	3.3	3.5	4.0	3.9	3.9	3.9	3.9	3.9	3.9	4.0	4.3	4.4	4.6	4.6	4.7	4.7	4.7	4.7	4.8	5.0	5.1	5.2	5.3	5.3	5.4	5.4	5.5
3	1.6	1.6	1.5	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.5	1.8	1.9	2.0	2.0	2.0	2.0	2.0	2.0	2.1	2.3	2.4	2.5	2.6	2.6	2.7	2.7	2.8
4	5.3	5.2	5.1	5.0	5.0	5.0	5.0	5.0	5.0	5.0	4.2	3.5	3.3	3.7	3.7	3.8	3.8	3.9	4.0	3.5	3.1	2.9	2.8	2.7	2.6	2.6	2.6	2.5
5											5.8	3.8	3.5	3.6	3.6	3.6	3.6	3.5	3.6	3.7	3.5	3.5	3.4	3.3	3.2	3.2	3.1	3.1
Right (6)											7.0	5.8	5.3	4.7	4.4	4.3	4.2	4.2	21.9	19.4	25.1	28.7	32.1	35.8	38.9	41.5	43.5	46.7

4-5 PM (Analysis Hour)

5-6 PM (Analysis Hour)

Lane	4				$1000 \mathrm{ft} \longrightarrow$									$870 \mathrm{ft} \longrightarrow$					4				1000 ft		\rightarrow			
	Detector - Gap (sec)																											
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
Left (1)	6.7	7.0	7.5	7.8	7.8	7.8	7.8	7.8	7.8	7.8	8.2	8.3	8.3	8.4	8.4	8.4	8.4	8.4	8.4	8.5	8.6	8.6	8.6	8.7	8.7	8.7	8.7	8.7
2	4.7	4.8	5.3	6.1	6.0	6.0	6.0	6.0	6.0	6.0	6.2	6.6	6.8	6.9	7.0	7.1	7.1	7.1	7.2	7.3	7.5	7.7	7.9	8.0	8.0	8.1	8.2	8.3
3	2.0	1.9	1.8	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.9	2.2	2.3	2.3	2.4	2.4	2.4	2.4	2.4	2.5	2.7	2.8	2.9	3.0	3.1	3.1	3.2	3.2
4	6.5	6.5	6.3	6.2	6.2	6.2	6.2	6.2	6.2	6.2	4.9	3.7	3.5	3.9	4.0	4.0	4.0	4.1	4.1	3.7	3.2	3.0	2.9	2.8	2.7	2.7	2.7	2.6
5											5.5	4.2	4.0	4.1	4.1	4.1	4.1	4.1	4.3	4.3	4.2	4.2	4.1	4.1	4.0	3.9	3.9	3.8
Right (6)											6.5	5.8	5.3	4.8	4.6	4.5	4.5	4.4	22.8	20.7	27.5	32.5	36.0	41.6	44.5	47.6	50.8	54.7

Lane	4				$1000 \mathrm{ft} \longrightarrow$					\rightarrow			$870 \mathrm{ft} \longrightarrow$						4				1000 ft		\rightarrow			
	Detector - Gap (sec)																											
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
Left (1)	11.0	11.2	11.8	12.3	12.3	12.3	12.3	12.3	12.3	12.3	12.6	12.9	13.1	13.2	13.2	13.2	13.2	13.3	13.3	13.3	13.4	13.5	13.5	13.5	13.5	13.5	13.5	13.5
2	6.2	6.4	6.9	7.9	7.7	7.7	7.7	7.7	7.7	7.7	7.9	8.5	8.7	8.9	9.0	9.0	9.0	9.0	9.1	9.2	9.5	9.6	9.7	9.8	9.9	10.0	10.0	10.1
3	2.6	2.5	2.4	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.5	3.0	3.1	3.2	3.2	3.2	3.2	3.2	3.2	3.4	3.7	3.9	4.0	4.2	4.2	4.3	4.3	4.4
4	9.4	9.3	9.2	9.0	9.0	9.0	9.0	9.0	9.0	9.0	7.3	5.4	5.3	5.8	5.8	5.9	5.9	6.0	6.1	5.3	4.5	4.3	4.2	4.0	3.9	3.9	3.9	3.9
5											7.7	5.7	5.4	5.6	5.6	5.6	5.6	5.5	5.7	5.9	5.6	5.5	5.4	5.3	5.3	5.2	5.2	5.1
Right (6)											10.2	8.3	7.7	6.9	6.7	6.6	6.5	6.4	33.6	29.8	39.0	44.1	50.5	59.5	62.9	65.6	68.7	69.7

Legend	
Color	Gap Range (sec)
	$0-1 \mathrm{sec}$
	$1-2 \mathrm{sec}$
	$2-3 \mathrm{sec}$
	$3-5 \mathrm{sec}$
	$5+\mathrm{sec}$

2-3 PM (Shoulder Hour)

Lane							4				$840 \mathrm{ft} \longrightarrow$						$\longleftarrow 350 \mathrm{ft} \rightarrow$							1000 ft		\rightarrow			
	Detector - Gap (sec)																												
	57	56	55	54	53	52	51	50	49	48	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32	31	30	29
Right (6)																												>100	>100
5											5.2	5.1	5.1	5.1	4.9	4.8	4.6	4.6	4.4	24.9	23.6	21.9	20.4	17.9	15.8	14.6	20.7	20.8	19.6
4	15.9	12.8	9.5	7.1	6.1	5.9	5.6	5.5	5.4	3.6	1.9	1.9	1.9	1.9	1.9	1.9	2.0	2.0	2.0	2.1	2.0	1.9	1.9	2.0	2.2	2.3	2.2	2.2	2.2
3	5.8	4.9	4.1	3.4	3.1	3.1	3.2	3.2	3.3	4.1	4.1	4.1	4.1	4.1	4.0	4.0	4.0	3.9	3.9	3.9	4.0	4.0	3.8	3.7	3.5	3.4	3.3	3.4	3.3
2	2.4	2.6	2.8	3.3	3.8	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.8	3.8	3.8	3.8	3.8	3.8	3.7	3.7	3.7	3.7	3.7
Left (1)	2.4	2.6	2.7	3.1	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.4	3.6	3.8	4.1	4.6	4.6	4.6	4.6	4.5	4.5	4.5	4.5

3-4 PM (Shoulder Hour)

4-5 PM (Analysis Hour)

Lane	4												$840 \mathrm{ft} \longrightarrow$				$\longleftarrow 350 \mathrm{ft} \rightarrow$			4				1000 ft					
	Detector - Gap (sec)																												
	57	56	55	54	53	52	51	50	49	48	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32	31	30	29
Right (6)																												>100	>100
5											4.6	4.6	4.5	4.5	4.4	4.3	4.0	4.0	3.9	21.6	20.7	19.4	17.7	15.7	14.1	12.9	18.4	18.6	17.4
4	14.1	11.3	8.4	6.3	5.4	5.3	5.1	5.0	4.9	3.3	1.6	1.6	1.6	1.7	1.7	1.7	1.8	1.8	1.8	1.9	1.8	1.7	1.8	1.8	2.0	2.1	2.0	2.0	2.0
3	5.3	4.3	3.7	3.0	2.8	2.9	2.9	3.0	3.0	3.9	3.9	3.9	3.8	3.8	3.8	3.8	3.7	3.6	3.6	3.6	3.6	3.6	3.5	3.4	3.2	3.1	3.1	3.1	3.1
2	2.1	2.3	2.5	2.9	3.4	3.4	3.4	3.4	3.4	3.4	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.4	3.5	3.4	3.4	3.3	3.3	3.3	3.3	3.3	3.3
Left (1)	2.1	2.3	2.4	2.8	2.9	2.9	2.9	3.0	3.0	2.9	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.1	3.2	3.4	3.8	4.4	4.4	4.4	4.3	4.3	4.3	4.3	4.3

5-6 PM (Analysis Hour)

Lane					10	ft							$840 \mathrm{ft} \longrightarrow$				$\longleftarrow 350 \mathrm{ft} \rightarrow$			4				1000 ft		\rightarrow			
	Detector - Gap (sec)																												
	57	56	55	54	53	52	51	50	49	48	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32	31	30	29
Right (6) <																												>100	>100
5											4.3	4.3	4.2	4.2	4.1	4.0	3.8	3.7	3.6	22.8	21.1	19.8	18.2	15.9	13.9	12.9	18.1	18.4	17.2
4	14.8	11.5	8.2	6.2	5.3	5.2	5.0	4.9	4.8	3.3	1.7	1.7	1.7	1.7	1.7	1.8	1.8	1.9	1.9	2.0	1.9	1.8	1.8	1.9	2.0	2.1	2.1	2.1	2.1
3	5.6	4.5	3.7	3.1	2.9	3.0	3.0	3.1	3.1	4.0	4.0	4.0	3.9	3.9	3.9	3.8	3.8	3.7	3.7	3.7	3.8	3.8	3.7	3.6	3.4	3.2	3.2	3.2	3.2
2	2.1	2.3	2.6	3.0	3.4	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.4	3.4	3.4	3.3	3.3	3.3	3.3	3.3	3.3
Left (1)	2.1	2.3	2.4	2.7	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	3.0	3.0	3.0	3.1	3.2	3.4	3.8	4.5	4.5	4.5	4.5	4.4	4.4	4.4	4.4

6-7 PM (Shoulder Hour)

3-4 PM (Shoulder Hour)

Lane	<				$1000 \mathrm{ft} \longrightarrow$									$870 \mathrm{ft} \longrightarrow$					4				1000 ft			\rightarrow		
	Detector - Lane Utilization (\%)																											
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
Left (1)	15\%	14\%	13\%	12\%	12\%	12\%	12\%	12\%	12\%	12\%	9\%	9\%	8\%	9\%	8\%	9\%	8\%	8\%	10\%	10\%	9\%	10\%	10\%	10\%	9\%	9\%	8\%	10\%
2	25\%	24\%	23\%	20\%	21\%	21\%	21\%	21\%	21\%	21\%	16\%	15\%	14\%	14\%	14\%	14\%	14\%	14\%	15\%	15\%	15\%	14\%	14\%	14\%	14\%	14\%	14\%	13\%
3	45\%	46\%	48\%	52\%	51\%	51\%	51\%	51\%	51\%	51\%	39\%	31\%	31\%	30\%	30\%	30\%	30\%	29\%	33\%	32\%	30\%	29\%	28\%	27\%	27\%	26\%	26\%	25\%
4	15\%	16\%	16\%	16\%	16\%	16\%	16\%	16\%	16\%	16\%	13\%	18\%	18\%	17\%	17\%	16\%	16\%	16\%	18\%	20\%	23\%	24\%	25\%	26\%	26\%	27\%	27\%	27\%
5											12\%	16\%	17\%	17\%	17\%	17\%	17\%	18\%	20\%	19\%	20\%	20\%	21\%	21\%	22\%	22\%	23\%	23\%
Right (6)											11\%	11\%	12\%	13\%	14\%	14\%	15\%	15\%	4\%	4\%	3\%	3\%	2\%	2\%	2\%	2\%	2\%	2\%

4-5 PM (Analysis Hour)

Lane	4				\longleftarrow					\rightarrow	4			$870 \mathrm{ft} \longrightarrow$					4				1000 ft					-
	Detector - Lane Utilization (\%)																											
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
Left (1)	15\%	15\%	13\%	12\%	12\%	12\%	12\%	12\%	12\%	12\%	9\%	8\%	9\%	9\%	8\%	8\%	9\%	9\%	10\%	10\%	9\%	10\%	10\%	10\%	9\%	9\%	9\%	9\%
2	25\%	24\%	23\%	20\%	21\%	21\%	21\%	21\%	21\%	21\%	16\%	15\%	14\%	14\%	14\%	14\%	14\%	14\%	16\%	15\%	15\%	14\%	14\%	14\%	14\%	14\%	13\%	13\%
3	45\%	46\%	48\%	52\%	51\%	51\%	51\%	51\%	51\%	51\%	39\%	32\%	31\%	30\%	30\%	30\%	29\%	29\%	33\%	32\%	30\%	29\%	28\%	27\%	27\%	26\%	26\%	26\%
4	15\%	15\%	16\%	16\%	16\%	16\%	16\%	16\%	16\%	16\%	13\%	18\%	18\%	17\%	17\%	17\%	17\%	16\%	18\%	20\%	23\%	24\%	25\%	26\%	26\%	27\%	27\%	27\%
5											12\%	16\%	16\%	17\%	17\%	17\%	17\%	17\%	19\%	19\%	20\%	20\%	21\%	21\%	22\%	22\%	23\%	23\%
Right (6)											11\%	11\%	12\%	13\%	14\%	14\%	14\%	15\%	4\%	4\%	3\%	3\%	2\%	2\%	2\%	2\%	2\%	2\%

5-6 PM (Analysis Hour)

6-7 PM (Shoulder Hour)

FINAL

2-3 PM (Shoulder Hour)

3-4 PM (Shoulder Hour)

5-6 PM (Analysis Hour)

Lane																	$\longleftarrow 350 \mathrm{ft} \rightarrow$			4				1000 ft			\rightarrow		
	Detector - Lane Utilization (\%)																												
	57	56	55	54	53	52	51	50	49	48	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32	31	30	29
Right (6)																												<1\%	<1\%
5											14\%	14\%	14\%	15\%	15\%	15\%	16\%	16\%	17\%	3\%	4\%	4\%	4\%	5\%	6\%	6\%	4\%	4\%	5\%
4	6\%	8\%	11\%	14\%	17\%	17\%	18\%	18\%	18\%	24\%	33\%	33\%	33\%	32\%	32\%	31\%	31\%	30\%	30\%	34\%	37\%	39\%	38\%	36\%	34\%	32\%	34\%	34\%	33\%
3	16\%	20\%	23\%	28\%	29\%	29\%	29\%	28\%	28\%	22\%	15\%	15\%	15\%	16\%	16\%	16\%	16\%	16\%	16\%	20\%	19\%	19\%	20\%	21\%	22\%	22\%	23\%	23\%	23\%
2	39\%	36\%	32\%	28\%	25\%	25\%	25\%	25\%	25\%	25\%	17\%	17\%	17\%	17\%	17\%	17\%	17\%	17\%	17\%	21\%	21\%	22\%	22\%	22\%	22\%	22\%	22\%	22\%	22\%
Left (1)	39\%	36\%	34\%	30\%	29\%	29\%	28\%	29\%	29\%	29\%	21\%	21\%	21\%	20\%	20\%	21\%	20\%	21\%	20\%	22\%	19\%	16\%	16\%	16\%	16\%	18\%	17\%	17\%	17\%

6-7 PM (Shoulder Hour)

I-94 Modernization Project - Approved Selected Alternative with Modifications Design Exception and Variance Summary

Technical Memorandum No. MDOT - TM-55

April 22, 2019
Project Title: I-94 Modernization Project
MDOT JN: 122367
Control Section: 82024

Author:	Edward Strada, PE
Reviewer:	John Baldauf, PE

1. Design Exceptions

The purpose of this memorandum is to summarize the potential design exceptions identified during the Approved Selected Alternative with Modifications (ASAM) conceptual design developed for the Supplemental Environmental Impact Statement (SEIS). The reference material used in determining the criteria is listed in the design criteria section.

Design Speed

The following design speeds are used for the ASAM conceptual design:

- I-94, M-10 \& I-75 Mainline - 60 mph
- Service Ramps - 30-45 mph
- System Ramps - 60 mph (desirable), 40 mph (minimum)
- Service Drives - 30 mph
- Crossroads - 30-40 mph

No design exceptions are anticipated for design speed.

Lane Width

The following lane widths are used for the ASAM conceptual design:

- I-94, M-10 \& I-75 Mainline - 12 ft .
- Service Ramps - 12 ft . for urban slip ramp otherwise 16 ft .
- System Ramps - 16 ft . for single lane and 12 ft . for two lane ramps

No design exceptions are anticipated for lane width.

NO. MDOT - TM-55

April 5, 2019

Shoulder Width

The following shoulder widths are used for the ASAM conceptual design:

- I-94, M-10 \& I-75 Mainline - median (10 ft. min. and 12 ft . typ.), outside (10 ft . min. and 12 ft . typ.), auxiliary ($8 \mathrm{ft} . \mathrm{min}$. and 12 ft . typ.)
- Service Ramps (Urban) - 0 ft . left side and 5 ft . right side
- Service Ramp (Other) - 6 ft . left side and 8 ft . right side
- System Ramps - 6 ft . left side and 8 ft . right side

Dequindre Bridge: Per the FEIS, a design exception for the inside shoulder width of 4 feet along $\mathrm{I}-94$ is required at the Dequindre Bridge just east of the I-75 interchange. The bridge was rehabilitated in 2000 keeping the 4 -foot inside shoulders width. During the development of the ASAM conceptual design, it was determined that the existing Dequindre bridge could be widened to the north to accommodate the additional width needed to increase the inside shoulder width from 4 feet to 12 feet. This will eliminate the need for a design exception and not impact the original ROW footprint shown in the FEIS.

I-94 Mainline: An 8 foot outside shoulder width has been provided along the auxiliary lanes between 14th Street and Rosa Parks Boulevard to minimize the impacts to the ROW footprint established during the FEIS. The reduced shoulder width allows for shorter span lengths for the Railroad bridge over I-94 (X02/X02-8 of 82023). This meets the minimum criteria for auxiliary lane shoulder width.

I-75 Mainline: During the FEIS and the ASAM conceptual design of the project, the design has been based on the assumption that the I-75 mainline pavement will not be reconstructed and remains in place. The existing median width along I-75 is 26 feet and only allows for two 11 feet - 8 inch shoulders with a concrete median barrier. With the reconstruction of the interchange, the preliminary system ramp pier design features an 8 foot diameter column within the existing median of I-75. This design reduces the median shoulder width from 11 feet -8 inch to 9 feet. AASHTO states that freeways with six or more lanes should have a minimum median shoulder width of 10 feet. Since 9 feet is the maximum shoulder width available at each system ramp pier, a design exception will be required. The pier design will be further evaluated during the detailed engineering phase to attempt to eliminate the design exception.

M-10 Mainline: The existing M-10 inside shoulder is currently sub-standard (<6-ft) within as well as north and south of the project limits. Due to the limited ROW the inside shoulder was designed to match the existing condition to improve geometrics for the outside shoulder and entrance/exit ramps. Vehicle refuge areas in the $\mathrm{M}-10$ median will be provided where feasible at the request of MDOT. A design exception will be required for the reduced shoulder width.

System Ramps: During the ASAM conceptual design of the project, the system ramp shoulder widths were designed to meet the minimum requirements noted above. In order to improve stopping sight distance along some ramps, the left and right sides were flipped to provide more

NO. MDOT - TM-55

April 5, 2019
width on the inside of the curves. In such cases, the minimum widths used were 8 ft on the left side and 6 ft on the right side. The ramps where this was applied are:

- WB I-94 to NB M-10, Ramp A
- NB M-10 to EB I-94, Ramp B
- EB I-94 to SB M-10, Ramp C
- SB M-10 to WB I-94, Ramp D
- NB M-10 to WB I-94, Ramp E
- EB I-94 to NB M-10, Ramp F
- SB M-10 to EB I-94, Ramp G
- WB I-94 to SB M-10, Ramp H

Other ramps will be further evaluated during the detailed engineering phase to improve sight distance where necessary.

Horizontal Alignment

The following horizontal alignment criteria are used for the ASAM conceptual design:

- I-94, M-10 \& I-75 Mainline - 60 mph - minimum radii of 1333 ft . based on $\mathrm{e}_{\mathrm{max}}=6 \%$
- Service Ramps - 30-45 mph - minimum radii of 232-643 ft. based on $\mathrm{e}_{\max }=6 \%$
- System Ramps - 40 mph - minimum radii of 485 ft . based on $\mathrm{e}_{\max }=6 \%$

Per the MDOT Road Design Manual, Section 3.04.03, the maximum superelevation for urban freeways and urban ramps, with a design speed of 60 mph , is 5%. The I-94 Rehabilitation Detailed Engineering Report - June 2010, Appendix G Section A.1, states that the "team concurs with Traffic and Safety (T\&S) that 6\% superelevation is desirable due to it facilitating higher posted speeds in the future. We propose to maintain the recommendation from the AJR to use 6% and only use the 5% as a minimum in case of tight constraints prohibiting the use of 6\%."

No design exceptions are anticipated for horizontal alignment.

Maximum Grade

The following maximum grades are used for the ASAM conceptual design:

- I-94, M-10 \& I-75 Mainline - max. 4\%
- Service Ramps - max. 5\%
- System Ramps - max. 5\%

No FHWA design exceptions are anticipated for grades; however, there are several locations where the 5% maximum grade was exceeded along system and service ramps. Even though the 5% maximum grades were exceeded, the grades were within the guidelines shown in the AASHTO 2011 Green Book of less than 6\%. At these locations MDOT only design exceptions will be required.

WB I-94 to NB I-75, Ramp A - This ramp has a down-grade of 5.55\% for approximately 350 feet. The speed provided at this location is near 40 mph , which according to AASHTO's 2011 Green Book, is within the limits ($4 \%-6 \%$) for down-grades on ramps with a design speed of 40 mph . The steeper grade was necessary to provide acceptable cross slope and roll-over values in the gore with the EB I-94 to NB I-75 Ramp F.

NB I-75 to WB I-94, Ramp E - This ramp has a down-grade of 5.18\% for approximately 650 feet. The speed provided at this location is near 40 mph , which according to AASHTO's 2011 Green Book, is within the limits ($4 \%-6 \%$) for down-grades on ramps with a design speed of 40 mph . The steeper grade was necessary to provide acceptable cross slope and roll-over values in the gore with the SB I-75 to WB I-94 Ramp D.

EB I-94 to NB I-75, Ramp F - This ramp has a down-grade of 5.94% for approximately 700 feet. The speed provided at this location is near 40 mph , which according to AASHTO's 2011 Green Book, is within the limits ($4 \%-6 \%$) for down-grades on ramps with a design speed of 40 mph . The steeper grade was necessary to provide acceptable cross slope and roll-over values in the gore with the WB I-94 to NB I-75 Ramp A.

Brush Street WB Entrance Ramp D - This ramp has a down-grade of 5.18\% for approximately 60 feet. The speed provided at this location is near 40 mph , which according to AASHTO's 2011 Green Book, is within the limits ($4 \%-6 \%$) for down-grades on ramps with a design speed of 40 mph . The steeper grade improves acceleration up to the WB I-94 posted speed. The steeper grade was necessary to improve ramp spacing between the I-94/M-10 system interchange ramps.

Conner Street WB Exit Ramp A - This ramp has an up-grade of 5.83% for approximately 100 feet. The speed provided at this location is near 40 mph, which according to AASHTO's 2011 Green Book, is within the limits ($4 \%-6 \%$) for up-grades on ramps with a design speed of 40 mph . The steeper grade improves deceleration down to the service drive posted speed. The steeper grade was necessary to avoid additional residential property acquisitions and provide room for the pedestrian bridge.

Conner Street EB Entrance Ramp B - This ramp has a down-grade of 6.00% for approximately 90 feet. The speed provided at this location is near 40 mph , which according to AASHTO's 2011 Green Book, is within the limits ($4 \%-6 \%$) for down-grades on ramps with a design speed of 40 mph . The steeper grade improves acceleration up to the EB I-94 posted speed. The steeper grade was necessary to avoid additional residential property acquisitions and provide room for the pedestrian bridge.

Conner Street WB Entrance Ramp D - This ramp has a down-grade of 5.49\% for approximately 50 feet. The speed provided at this location is near 40 mph, which according to AASHTO's 2011 Green Book, is within the limits ($4 \%-6 \%$) for down-grades on ramps with a design speed of 40 mph . The steeper grade improves acceleration up to the WB I-94 posted speed. The steeper

Page 4 of 11
Appendix H Design Exceptions Tech Memo.docx

NO. MDOT - TM-55

April 5, 2019
grade was necessary to avoid additional residential property acquisitions and provide room for the pedestrian bridge.

Mt. Elliott Street WB Exit Ramp A - This ramp has an up-grade of 5.55% for approximately 50 feet. The speed provided at this location is near 40 mph, which according to AASHTO's 2011 Green Book, is within the limits ($4 \%-6 \%$) for up-grades on ramps with a design speed of 40 mph . The steeper grade improves deceleration down to the service drive posted speed. The steeper grade was necessary to allow two-way Harper Avenue to pass over the ramp with the required vertical clearance.

Mt. Elliott Street EB Entrance Ramp B - This ramp has a down-grade of 5.62% for approximately 130 feet. The speed provided at this location is near 40 mph , which according to AASHTO's 2011 Green Book, is within the limits ($4 \%-6 \%$) for down-grades on ramps with a design speed of 40 mph . The steeper grade improves acceleration up to the EB I-94 posted speed. The steeper grade was necessary to pass under the East Service Drive bridge to Harper Avenue with the required vertical clearance.

Mt. Elliott Street EB Exit Ramp C - This ramp has an up-grade of 5.39% for approximately 110 feet. The speed provided at this location is near 40 mph, which according to AASHTO's 2011 Green Book, is within the limits ($4 \%-6 \%$) for up-grades on ramps with a design speed of 40 mph . The steeper grade improves deceleration down to the service drive posted speed. The steeper grade was necessary to avoid additional residential property acquisitions.

Van Dyke Avenue EB Exit Ramp C - This ramp has an up-grade of 5.81% for approximately 70 feet. The speed provided at this location is near 40 mph, which according to AASHTO's 2011 Green Book, is within the limits ($4 \%-6 \%$) for up-grades on ramps with a design speed of 40 mph . The steeper grade improves deceleration down to the service drive posted speed. The steeper grade was necessary to provide the required underclearance at Sherwood Ave and to provide adequate distance from the ramp to the intersection at Van Dyke Avenue.

Van Dyke Avenue WB Entrance Ramp D - This ramp has a down-grade of 5.55% for approximately 90 feet. The speed provided at this location is near 40 mph , which according to AASHTO's 2011 Green Book, is within the limits (4\%-6\%) for down-grades on ramps with a design speed of 40 mph . The steeper grade improves acceleration up to the WB I-94 posted speed. The steeper grade was necessary to provide the required underclearance at Sherwood Avenue.

Calumet Street SB Entrance Ramp C - This ramp has a down-grade of 5.90% for approximately 150 feet. The speed provided at this location is near 40 mph , which according to AASHTO's 2011 Green Book, is within the limits ($4 \%-6 \%$) for down-grades on ramps with a design speed of 40 mph . The steeper grade improves acceleration up to the SB M-10 posted speed. The steeper grade was necessary to provide the required underclearance at Selden Street.

NO. MDOT - TM-55

April 5, 2019
Forest Avenue NB Entrance Ramp A - This ramp has a down-grade of 5.94\% for approximately 40 feet. The speed provided at this location is near 40 mph, which according to AASHTO's 2011 Green Book, is within the limits ($4 \%-6 \%$) for down-grades on ramps with a design speed of 40 mph . The steeper grade improves acceleration up to the NB M-10 posted speed. The steeper grade was necessary to provide the required underclearance at Warren Avenue.

Stopping Sight Distance (SSD)

The following SSD are used for the ASAM conceptual design:

- I-94, M-10 \& I-75 Mainline $-60 \mathrm{mph}-570 \mathrm{ft}$. minimum
- Service Ramps - 30-45 mph - 200 ft . to 360 ft . minimum
- System Ramps - 40 mph - 305 ft . minimum

Within the I-94/I-75 and I-94/M-10 interchanges, the system ramp design speed criteria for horizontal and vertical controls are 40 mph . Due to the existing constrained ROW footprint and the close proximity of the two interchanges (less than one mile), the horizontal radii for several ramps has been designed to a minimum of 485 feet, which relates to a 40 mph design speed with 6% superelevation (MDOT Straight Line Method). The use of this minimum radius requires a horizontal sightline offset (HSO) of almost 24 feet to meet the horizontal sight distance requirements for a 40 mph design speed. This would require a shoulder width of more than 16 feet to meet this criterion. Both MDOT and AASHTO guidelines discourage using shoulder widths greater than 12 feet due to increased risk of traffic utilizing the shoulder for passing. A 12^{\prime} inside shoulder width was evaluated and it was found that increasing from an 8 ' inside shoulder width to a 12 ' inside shoulder width did not result in significant SSD improvements. A 12^{\prime} inside shoulder width only increased the SSD by 30^{\prime} to 40^{\prime}, which is a distance equivalent to approximately $11 / 2$ car lengths and a design speed increase of $3-4 \mathrm{mph}$. The costs associated with a 12 ' inside shoulder width was determined to be approximately $\$ 10,000,000$ greater and it was determined that the cost increase was not justified by such nominal improvements. For this reason, a design exception will be necessary for the Horizontal Stopping Sight Distance (SSD) for the following interchange ramps:

WB I-94 to NB M-10, Ramp A - This ramp has a horizontal radius of 485 feet and a superelevation rate of 6.0% which meets a 40 mph design speed. The horizontal sight offset (HSO) required for this ramp is 19.54 feet or a 12 foot inside shoulder.

NB M-10 to EB I-94, Ramp B - This ramp has a horizontal radius of 598 feet and a superelevation rate of 4.8% which meets a 40 mph design speed. The horizontal sight offset (HSO) required for this ramp is 19.09 feet or a 12 foot inside shoulder.

EB I-94 to SB M-10, Ramp C - This ramp has a horizontal radius of 350 feet and a superelevation rate of 5.8% which meets a 35 mph design speed. The horizontal sight offset (HSO) required for this ramp is 21.60 feet or a 14 foot inside shoulder.

NO. MDOT - TM-55

April 5, 2019
SB M-10 to WB I-94, Ramp D - This ramp has a horizontal radius of 598 feet and a superelevation rate of 4.8% which meets a 40 mph design speed. The horizontal sight offset (HSO) required for this ramp is 19.09 feet or a 12 foot inside shoulder.

NB M-10 to WB I-94, Ramp E - This ramp has a horizontal radius of 584 feet and a superelevation rate of 5.0% which meets a 40 mph design speed. The horizontal sight offset (HSO) required for this ramp is 19.54 feet or a 12 foot inside shoulder.

EB I-94 to NB M-10, Ramp F - This ramp has a horizontal radius of 835 feet and a superelevation rate of 6.0% which meets a 50 mph design speed. The horizontal sight offset (HSO) required for this ramp is 26.65 feet or a 19 foot inside shoulder.

SB M-10 to EB I-94, Ramp G - This ramp has a horizontal radius of 584 feet and a superelevation rate of 5.0% which meets a 40 mph design speed. The horizontal sight offset (HSO) required for this ramp is 19.09 feet or a 12 foot inside shoulder.

WB I-94 to SB M-10, Ramp H - This ramp has a horizontal radius of 858 feet and a superelevation rate of 6.0% which meets a 50 mph design speed. The horizontal sight offset (HSO) required for this ramp is 26.18 feet or a 19 foot inside shoulder.

WB I-94 to NB I-75, Ramp A - This ramp has a horizontal radius of 485 feet and a superelevation rate of 6% which meets a 40 mph design speed. The horizontal sight offset (HSO) required for this ramp is 23.78 feet or a 16 foot inside shoulder.

EB I-94 to SB I-75, Ramp C - This ramp has a horizontal radius of 500 feet and a superelevation rate of 5.80% which meets a 40 mph design speed. The horizontal sight offset (HSO) required for this ramp is 23.08 feet or a 15 foot inside shoulder.

SB I-75 to WB I-94, Ramp D - This ramp has a horizontal radius of 485 feet and a superelevation rate of 6% which meets a 40 mph design speed. The horizontal sight offset (HSO) required for this ramp is 23.78 feet or a 16 foot inside shoulder.

NB I-75 to WB I-94, Ramp E - This ramp has a horizontal radius of 525 feet and a superelevation rate of 5.55% which meets a 40 mph design speed. The horizontal sight offset (HSO) required for this ramp is 22.00 feet or a 14 foot inside shoulder.

SB I-75 to EB I-94, Ramp G - This ramp has a horizontal radius of 485 feet and a superelevation rate of 6% which meets a 40 mph design speed. The horizontal sight offset (HSO) required for this ramp is 23.78 feet or a 16 foot inside shoulder.

Cross Slope

The following cross slopes are used for the ASAM conceptual design:

- I-94, M-10 \& I-75 Mainline - 2% for travel lanes and 4% for shoulders

Page 7 of 11
Appendix H Design Exceptions Tech Memo.docx

NO. MDOT - TM-55

April 5, 2019

- Service Ramps - 2\% for travel lanes and 4\% for shoulders
- System Ramps - 2% for travel lanes and 4% for shoulders

The maximum roll-over rate or algebraic difference in cross slope criteria for the project is 6%.
A design exception is anticipated for exceeding the established criteria at the following locations:

- Milwaukee Ramp C - A 17.9\% gore cross slope was necessary to increase the ramp spacing between the l-94/M-10 interchange ramps and improve operational efficiency. The SB M-10 service drive and Milwaukee Ramp C horizontal alignments are constrained by an existing building adjacent to the right-of-way, which limits the possible geometric adjustments without impacting additional right-of-way. The location of the ramp cannot be moved or eliminated and also maintain access to I-94 as shown in the IACR.
- Calumet Ramp B - A 23.2\% gore cross slope was necessary due to right-of-way constraints along the NB M-10 service drive. The NB M-10 service drive and Calumet Ramp B horizontal alignments are constrained by a school and a city park adjacent to the right-ofway, which limits the possible geometric adjustments without impacting additional right-ofway. The location of the ramp is also constrained by the proposed bridge at Calumet and cannot be moved or eliminated and also maintain access.

Superelevation Rate

For the ASAM conceptual design, the MDOT Straight Line Method with 6\% maximum superelevation rate was used. The distribution of the superelevation transition entering and exiting the horizontal curves was 33% inside the curve and 67% outside the curve.

No design exceptions are anticipated for superelevation rates.

Vertical Clearance

The I-94 project falls within the "Special Routes" section as described in the MDOT RDM section 3.12G, and as approved in FHWA Document No. 91575 dated January 27, 2006, which requires a vertical clearance of 14 ft .-6in. minimum and 14 ft .-9in. desirable. The ASAM conceptual design set the final condition vertical clearances to 14 ft . -9 in . and the interim condition (maintenance of traffic and advanced bridge work) to $14 \mathrm{ft} .-6 \mathrm{in}$.

No design exceptions are anticipated for vertical clearance.

Design Loading Structural Capacity

No design exceptions are anticipated for design loading structural capacity.

Page 8 of 11

Appendix H Design Exceptions Tech Memo.docx

2. Design Variances

The purpose of this section is to summarize the potential design variances identified during the Approved Selected Alternative with Modifications conceptual design developed for the Supplemental Environmental Impact Statement.

Lane Width

The following lane widths are used for the ASAM conceptual design:

- Service Drives - 11 feet
- Crossroads - 10-12 feet

No design variances are anticipated for lane width.

Shoulder Width

The following shoulder widths are used for the ASAM conceptual design:

- Service Drives - 0 feet left side and 8 feet right side
- Crossroads - 0 feet (curb or curb \& gutter used)

No design variances are anticipated for shoulder width.

Horizontal Alignment

The following horizontal alignment criteria are used for the ASAM conceptual design:

- Service Drives - 30 mph - minimum radii of 333 ft . based on AASHTO Low-Speed Urban Streets
- Crossroads $-30-40 \mathrm{mph}-$ minimum radii of 232-485 ft. based on $\mathrm{e}_{\max }=6 \%$

No design variances are anticipated for horizontal alignment.

Maximum Grade

The following grades are used for the ASAM conceptual design:

- Service Drives - max. 9\%
- Crossroads - max. 7\%-9\%

No design variances are anticipated for maximum grade.

Stopping Sight Distance (SSD)

The following SSD are used for the ASAM conceptual design:

- Service Drives - 30 mph - 200 feet minimum
- Crossroads $-30-40 \mathrm{mph}-200 \mathrm{ft}$. to 305 ft . minimum

Page 9 of 11
Appendix H Design Exceptions Tech Memo.docx

No design variances are anticipated for stopping sight distance.

Cross Slope

The following cross slopes are used for the ASAM conceptual design:

- Service Drives - 2% for lanes and shoulders (shoulder utilized as multiuse lane for nonmotorized/transit traffic)
- Crossroads - 2\% for travel lanes

No design variances are anticipated for cross slope.

Superelevation Rate and Superelevation Transitions

For the ASAM conceptual design, AASHTO Low-Speed Urban Streets criteria was used. The minimum radius of the horizontal curve was used so as to maintain normal crown on the roadway.

No design variances are anticipated for superelevation rates.

Ramp Acceleration/Deceleration Length

The minimum acceleration/deceleration lengths and tapers rates used in the ramp design for the development of the ASAM conceptual design are in accordance with the MDOT Geometric Design Guide for a ramp design speed of 45 mph and mainline speed of 60 mph . No design exceptions are anticipated for ramp acceleration/deceleration lane lengths and tapers.

Ramp Distance From Intersection

The spacing between the intersection and the entrance ramps were reduced at some locations from 200 feet as shown in MDOT Geometric Design Guides to 100 feet to increase ramp spacing along the mainline and ramp length to avoid design exceptions in vertical alignment and/or grades.

The spacing between the intersection and the exit ramp gores were reduced at some location from 425 feet desirable, as shown in the MDOT Geometric Design Guides, to 300 feet minimum to increase the ramp spacing along the mainline and ramp length to avoid design exceptions in vertical alignment and/or grades.

Lane Taper Drop Rate

The FEIS geometry was modified at the WB I-94 exit ramp to I-96 to provide more lane balance and eliminates the 5 lane to 3 lane transition at the POB. A 600' (50:1 taper) lane drop was provided just west of the ramp gore to accommodate the 4 lane to 3 lane transition. The 50:1 taper is the maximum taper rate obtainable to avoid impacting the I-96 mainline bridges going over I-94, which are outside the limits defined by the FEIS. The current AASHTO 2011 Green

NO. MDOT - TM-55
April 5, 2019
Book states the minimum taper rate for a lane drop should be 50:1, and the desirable taper rate is $70: 1$.

Trumbull Avenue (S21 of 82023) over I-94 Lane Configuration Verification

NO. MDOT - TM 1

December 16, 2014
MDOT JN: 122114
Control Section: 82024

Author: Mark Smith, PE, PTOE
Reviewer: Karianne Steffen, PE, PTOE
Jason Kessler, PE

Background:

As part of the I-94 Modernization Project Owners Representative Work Task \#1, Subtask 2.2 Traffic, this technical memorandum is intended to verify the future lane configuration at Trumbull over I-94 based on 2014 traffic data and additional information provided by MDOT.

Discussion:

In response to the recent request from MDOT, a traffic analysis has been completed for Trumbull Ave over I-94 in Detroit, MI to verify the lane configuration for the proposed bridge reconstruction. The traffic analysis was based on year 2035 projections with a goal of achieving a Level of Service (LOS) of D or better on all movements at the intersection of Trumbull Ave \& Eastbound (EB) I-94 Service Drive and the intersection of Trumbull Ave \& Westbound (WB) I-94 Service Drive.

Existing Project Data:

Trumbull Ave over I-94 is currently striped as a three (3) lane bridge, with one thru lane in each direction, and a center left turn lane. The existing intersection of Trumbull Ave \& EB I-94 Service Drive is signalized with a left turn lane / thru lane / right lane on the EB approach, a thru lane / thru-right lane on the Northbound (NB) approach, and a left turn lane / thru lane on the Southbound (SB) approach. The existing intersection of Trumbull Ave \& WB I-94 Service Drive is unsignalized with no WB leg, a left turn lane / thru lane on the NB approach and a thru lane / right turn lane on the SB approach. Existing turning movement counts were completed by HNTB on 9/30/14 and 10/2/14 and can be seen in Appendix A. Existing turning movement counts were also provided by MDOT on 10/17/14 from hose counts taken in April 2014 and from data in the I-94 Rehabilitation Project Traffic Report, Volume 3 Addendum: Modifications to the Recommended Alternative, dated August 2004 which can be seen in Appendix A.

Future Conditions:

The future condition of the intersections at Trumbull Ave \& EB I-94 Service Drive and Trumbull Ave \& WB I-94 Service drive will include a continuous two (2) lane service drive in the EB and WB directions. The intersection at Trumbull Ave \& EB I-94 Service Drive and Trumbull Ave \& WB I-94 Service Drive will both be signalized.

The existing turning movement counts obtained from HNTB and the counts provided by MDOT were both analyzed as part of the lane configuration verification. Projected traffic data for 2035 was based on a $0.5 \%-1 \%$ growth rate. A growth rate of 0.5% was used to calculate future traffic volumes on all legs except the EB service drive to NB Trumbull and the SB Trumbull to

Attachments
Page 1 of 3
File: 50989-DS-001(External)

WB Service Drive movements which were grown at 1% due to the connection to the Henry Ford Health System. The projected volumes (year 2035) can be seen in Appendix B.

Traffic Analysis:

Synchro/Simtraffic was used to complete the traffic analysis for Trumbull Ave over I-94. The goal of the traffic analysis was to optimize the number of lanes while achieving a LOS of D or better on all movements and $95^{\text {th }}$ percentile queue lengths that are less than available storage lengths at the intersection of Trumbull Ave \& EB I-94 Service Drive and the intersection of Trumbull Ave \& WB I-94 Service Drive. This was accomplished by testing several scenarios of varying lane configurations and signal timings to achieve a LOS D at all movements. After achieving a LOS D or better at all movement's further analysis was completed by adjusting signal timings and offsets to improve the coordination between the two signals and to reduce queuing.

The final lane configuration that was evaluated using the traffic data obtained by HNTB and provided by MDOT is a five (5) lane bridge over I-94, with one thru lane in each direction, two NB left turn lanes and one SB left turn lane. The intersection of Trumbull Ave \& EB Service Drive is signalized with a left turn lane / thru lane / thru-right lane on the EB approach, a thru lane / thruright lane on the NB approach, and a left turn lane / thru lane on the SB approach. The intersection of Trumbull Ave \& WB Service Drive is signalized with a thru-left lane / thru-right lane on the WB approach, a dual left turn lane / thru lane on the NB approach, and a thru-right / right turn lane on the SB approach. Figure 1 below shows the proposed lane configuration for Trumbull Ave over I-94.

Figure 1: Proposed lane configuration for Trumbull Ave over I-94

Table 1 below shows the intersection LOS for both the traffic data obtained by HNTB and the traffic data provided by MDOT.

Table 1: Intersection LOS for year 2035 at Trumbull Ave over I-94

Intersection	Year 2035	Traffic Data Obtained from HNTB $(9 / 30 / 14$ and 10/2/14)	Traffic Data provided by MDOT (April 2014 / August 2004)
	AM Peak Hour	LOS C	LOS B
	PM Peak Hour	LOS D	LOS C
Trumbull Ave $\&$ WB I-94 Service Drive	AM Peak Hour	PM Peak Hour	LOS C

The five (5) lane bridge section is the recommended cross section after discussions with MDOT on December 12, 2014. An alternate four (4) lane bridge section was initially considered as it provided an acceptable LOS of D or better, but was dismissed because queue lengths for the NB and SB left turns on Trumbull Ave exceed available storage lengths.

Outputs from Synchro/Simtraffic for individual movements which include LOS, delay, V/C ratio, and the $95^{\text {th }}$ Percent Queue lengths are summarized in Appendix B. The output sheets from Synchro/Simtraffic are included in Appendix C.

Recommendation:

A review of the traffic analysis on Trumbull Ave over I-94 indicates that a five (5) lane bridge will be required to accommodate the traffic based on year 2035 projections. The results of traffic data obtained by HNTB and the traffic data provided by MDOT both indicated that an intersection LOS of D or better is projected for year 2035, with all individual movements at a LOS D or better.

APPENDIX A
 Existing TURNING MOVEMENT COUNT DATA

Trumbull Ave at I-94 AM Peak Hour (7:30 AM - 8:30 AM)

Trumbull Ave at I-94 PM Peak Hour (4:30 PM - 5:30 PM)
 OFFICE MEMORANDUM
Michigan Department of Transportation

DATE:
April 10, 2014
TO: Kyle Kopper, Bridge Design
FROM: Amy Lipset, Asset Management
SUBJECT: TAR \#2748: Trumbull Avenue over I-94, JN 113888D

Traffic Information

The following tables contain the requested traffic information for Trumbull Avenue over I-94 (CS 82023, MP 2.3) in Wayne County. Current traffic volumes were calculated from hose counts taken in April 2014 and from data in the I-94 Rehabilitation Project Traffic Report, Volume 3 Addendum: Modifications to the Recommended Alternative, dated August 2004. A growth rate of $0.5 \%-1 \%$ was used to calculate future traffic volume. This number is based on nearby land uses, the addition of the new I-94 service drives and population projections in Wayne County.

Northbound Trumbull Ave	2014	2015	
Total Average Daily Traffic (ADT)	2035		
\% Commercial of ADT	8,200	8,250	9,100
Commercial DDHV	22	2.5%	25
AM Peak Hour (7:15-8:15)	510	510	565
PM Peak Hour (4:45-5:45)	740	745	820

Southbound Trumbull Ave	2014	2015	2035
Total Average Daily Traffic (ADT)	1,550	1,560	1,725
\% Commercial of ADT	4.5 \%		
Commercial DDHV	7	7	8
AM Peak Hour (7:45-8:45)	105	105	115
PM Peak Hour (4:45-5:45)	140	140	155

	Rigid	Flexible
Growth Rate	0.5%	0.5%
Growth Type	Compound	Compound
Initial Yearly 18-kip ESAL (both directions)	56,210	42,160
Direction Distribution Factor	84%	84%
Lane Distribution Factor	100%	100%
Total 18 Kip Axle Loadings	990,560	742,960

The design hour volume (DHV) is 11%. If you have any questions regarding this traffic analysis, please contact me at 517.373.2909.

Trumbull Ave
Turn Movement Diagram: 2015 AM Peak
7:30-8:30

Leg 4: WB I-94 On Ramp

AT

WB I-94 Service Drive

Leg 1: Trumbull Ave
North Leg

Leg 2: Apartment driveway (clos East Leg

Leg 3:	Trumbull Ave South Leg		RIGHT
	LEFT	THRU	
	155	399	0
122		554	
SB	676	NB	
	TOTAL		

AT
 WB I-94 Service Drive

Leg 1: Trumbull Ave
North Leg

Leg 4: WB I-94 Service Drive

Leg 2: WB I-94 Service Drive
East Leg
RIGHT
THRU
LEFT

Leg 3: Trumbull Ave
South Leg

	LEFT	THRU	RIGHT
	179	462	0
199		641	
SB	841	NB	
	TOTAL		

Trumbull Ave
Turn Movement Diagram:

2015 PM Peak

4:45-5:45

Leg 4: WB I-94 On Ramp

AT

WB I-94 Service Drive

Leg 1: Trumbull Ave
North Leg

	TOTAL	
	SB	
	442	NB
	474	
307	167	0

Leg 2: Apartment driveway (clos

Leg 3:	Trumbull Ave South Leg		RIGHT
	524	268	0
167		792	
SB	959	NB	
	TOTAL		

AT
 WB I-94 Service Drive

Leg 1: Trumbull Ave
North Leg

	TOTAL		
	SB	942	NB
	575		367
430	145	0	
RIGHT	THRU	LEFT	

Leg 4: WB I-94 Service Drive

Leg 2: WB I-94 Service Drive
East Leg
RIGHT
THRU
LEFT

Leg 3: Trumbull Ave
South Leg

	LEFT	THRU	RIGHT
	579	297	0
250		876	
SB	1126	NB	

Trumbull Ave
Turn Movement Diagram:

2015 AM Peak

7:30-8:30

Leg 4: EB I-94 Service Drive

AT

EB I-94 Service Drive

Leg 1: Trumbull Ave
North Leg

		TOTAL	
	SB	675	NB
	122		554
0	117	5	
RIGHT	THRU	LEFT	

Leg 2: EB I-94 Service Drive

Leg 3:	Trumbull Ave South Leg		RIGHT
	0	220	7
381		227	
SB	609	NB	
	TOTAL		

AT

EB I-94 Service Drive

Leg 1: Trumbull Ave
North Leg

Leg 2: EB I-94 Service Drive

Leg 3: Trumbull Ave
South Leg

	LEFT	THRU	RIGHT
	0	243	8
453		251	
SB	704	NB	

Trumbull Ave
Turn Movement Diagram: 2015 PM Peak
4:45-5:45

Leg 4: EB I-94 Service Drive

AT

EB I-94 Service Drive

Leg 1: Trumbull Ave
North Leg

		TOTAL	
	SB	959	NB
	167		792
0	160	7	
RIGHT	THRU	LEFT	

Leg 2: EB I-94 Service Drive

Leg 3:	Trumbull Ave South Leg		RIGHT
	LEFT	THRU	
	0	629	10
383		639	
SB	1022	NB	
	TOTAL		

Trumbull Ave
Turn Movement Diagram:
2035 PM Peak

Leg 4: EB I-94 Service Drive

AT
EB I-94 Service Drive

Leg 1: Trumbull Ave
North Leg

Leg 2: EB I-94 Service Drive

Leg 3: Trumbull Ave
South Leg

	LEFT		THRU	
	RIGHT			
	0	725	60	
395		785		
SB	1180	NB		
		TOTAL		

Michigan Department of Transportation

DATE:
May 27, 2014
TO: Kyle Kopper, Bridge Design
FROM: Amy Lipset, Asset Management
SUBJECT: TAR \#2748A: Trumbull Avenue over I-94, JN 113888D

Traffic Information

The following graphs contain the actual counted traffic information for Trumbull Avenue at the I-94 service drives in Wayne County. Traffic volumes were calculated from hose counts taken in April 2014. A growth rate of 0.5% was used to calculate future traffic volume on all legs except the EB service drive to NB Trumbull and the SB Trumbull to WB service drive movements which were grown at 1% due to the connection to the Henry Ford Health System. If you have any questions regarding this traffic analysis, please contact me at 517.373.2909.

AT
 WB I-94 Service Drive

Leg 2: Apartment driveway (closed)

Leg 3: Trumbull Ave
South Leg

	LEFT		THRU
RIGHT			
	154	397	0
122		551	
SB	673		
	NB		
		TOTAL	

Trumbull Ave
Turn Movement Diagram:
2035 AM Peak

Leg 4: WB I-94 Service Drive

at WB I-94 Service Drive

Leg 1: Trumbull Ave
North Leg
TOTAL

Leg 3: Trumbull Ave
South Leg

	LEFT	THRU	RIGHT
	170	487	0
134		657	
SB	792	NB	
	TOTAL		

Trumbull Ave

Turn Movement Diagram:
2035 PM Peak

AT

WB I-94 Service Drive

Leg 1: Trumbull Ave
North Leg

		TOTAL	
	SB	740	NB
	472		268
306	166	0	
RIGHT	THRU	LEFT	

Leg 3: Trumbull Ave
South Leg
LEFT THRU RIGHT

	EFT	THR	RIGHT
	524	268	0
166		792	
SB	958	NB	
	TAL		

AT

WB I-94 Service Drive

Leg 2: Apartment driveway (closed)

Leg 3: Trumbull Ave
South Leg

	LEFT	THRU	RIGHT
	579	297	0
183		876	
SB	1059	NB	
	TOTAL		

Trumbull Ave
Turn Movement Diagram: 2015 AM Peak
7:30-8:30

Leg 4: EB I-94 Service Drive

West Leg			
WB	0		
TOTAL 682		332	LEFT
EB	682	86	THRU
		263	RIGH

AT EB I-94 Service Drive

Leg 1:	Trumbull Ave North Leg		NB
		TOTAL	
	SB	674	
	122		552
0	117	5	
RIGHT	THRU	LEFT	

Leg 2: EB I-94 Service Drive

Leg 3: Trumbull Ave
South Leg

	FT	THRU	RIGHT
	0	220	7
380		227	
SB	607	NB	
	TAL		

AT
 EB I-94 Service Drive

Leg 1: Trumbull Ave
North Leg

Leg 4: EB I-94 Service Drive

Leg 3: Trumbull Ave
South Leg

	LEFT		THRU
RIGHT			
	0	243	8
420		251	
SB	671		
	NB		
	TOTAL		

Trumbull Ave
Turn Movement Diagram:
2015 PM Peak
4:45-5:45

Leg 4: EB I-94 Service Drive

EB I-94 Service Drive

Leg 1:	Trumbull Ave North Leg		NB
		TOTAL	
	SB	948	
	156		792
0	150	6	

	EB I-94 Service Drive East Leg	
RIGHT 80		
THRU 0	80	WB
LEFT 0		164
	83	EB

Leg 3: Trumbull Ave
South Leg
LEFT THRU RIGHT

	LEFT	THRU	RIGHT
	0	629	10
373		639	
SB	1012	NB	

Trumbull Ave
Turn Movement Diagram:

```
2035 PM Peak
```

Leg 4: EB I-94 Service Drive

+

AT EB I-94 Service Drive

Leg 2: EB I-94 Service Drive

Leg 3: Trumbull Ave
South Leg

	LEFT		THRU		RIGHT
	0	694	11		
412		706			
SB	1118	NB			
	TOTAL				

APPENDIX B
 PROJECTED TRAFFIC VOLUMES AND SYNCHRO/SIMTRAFFIC SUMMARY

APPENDIX C SYNCHRO/SIMTRAFFIC OUTPUT SHEETS

Intersection: 1: Trumbull Ave \& I-94 WB Service Drive

Movement	WB	WB	NB	NB	NB	SB	SB
Directions Served	LT	TR	L	L	T	TR	R
Maximum Queue (ft)	217	178	165	149	221	138	67
Average Queue (ft)	146	105	89	90	92	68	7
95th Queue (ft)	210	182	147	137	174	122	35
Link Distance (ft)	849	849	253	253	253	544	544
Upstream Blk Time (\%)					0		
Queuing Penalty (veh)					0		
Storage Bay Dist (ft)							
Storage Blk Time (\%)							
Queuing Penalty (veh)							

Intersection: 2: Trumbull Ave \& I-94 EB Service Drive

Movement	EB	EB	EB	NB	NB	SB	SB
Directions Served	L	T	TR	T	TR	L	T
Maximum Queue (ft)	229	332	420	195	194	131	154
Average Queue (ft)	101	188	208	117	97	57	77
95th Queue (ft)	178	286	335	174	170	109	138
Link Distance (ft)	776	776	776	434	434	253	253
Upstream Blk Time (\%)							
Queuing Penalty (veh)							
Storage Bay Dist (ft)							
Storage Blk Time (\%)							
Queuing Penalty (veh)							
Network Summary							

Network wide Queuing Penalty: 0

Intersection: 1: Trumbull Ave \& I-94 WB Service Drive

Movement	WB	WB	NB	NB	NB	SB	SB
Directions Served	LT	TR	L	L	T	TR	R
Maximum Queue (ft)	419	402	237	218	244	351	306
Average Queue (ft)	281	244	134	126	140	212	142
95th Queue (ft)	388	355	211	197	224	313	262
Link Distance (ft)	849	849	253	253	253	737	737
Upstream Blk Time (\%)			0	0	0		
Queuing Penalty (veh)			0	0	1		
Storage Bay Dist (ft)							
Storage Blk Time (\%)							
Queuing Penalty (veh)							

Intersection: 2: Trumbull Ave \& I-94 EB Service Drive

Movement	EB	EB	EB	NB	NB	SB	SB
Directions Served	L	T	TR	T	TR	L	T
Maximum Queue (ft)	193	359	404	302	267	141	161
Average Queue (ft)	94	226	240	187	155	58	71
95th Queue (ft)	165	326	349	268	245	118	132
Link Distance (ft)	776	776	776	461	461	253	253
Upstream Blk Time (\%)							
Queuing Penalty (veh)							
Storage Bay Dist (ft)							
Storage Blk Time (\%)							
Queuing Penalty (veh)							
Network Summary							

[^4]

Intersection: 1: Trumbull Ave \& I-94 WB Service Drive

Movement	WB	WB	NB	NB	NB	SB	SB
Directions Served	LT	TR	L	L	T	TR	R
Maximum Queue (ft)	224	204	133	114	153	139	29
Average Queue (ft)	141	98	64	52	53	66	3
95th Queue (ft)	207	185	114	99	112	124	18
Link Distance (ft)	849	849	253	253	253	241	241
Upstream Blk Time (\%)							
Queuing Penalty (veh)							
Storage Bay Dist (ft)							
Storage Blk Time (\%)							
Queuing Penalty (veh)							

Intersection: 2: Trumbull Ave \& I-94 EB Service Drive

Movement	EB	EB	EB	NB	NB	SB	SB
Directions Served	L	T	TR	T	TR	L	T
Maximum Queue (ft)	326	367	358	144	126	123	138
Average Queue (ft)	145	206	206	75	48	49	61
95th Queue (ft)	262	320	329	128	102	100	116
Link Distance (ft)	776	776	776	276	276	253	253
Upstream Blk Time (\%)							
Queuing Penalty (veh)							
Storage Bay Dist (ft)							
Storage Blk Time (\%)							
Queuing Penalty (veh)							
Network Summary							

Network wide Queuing Penalty: 0

Intersection: 1: Trumbull Ave \& I-94 WB Service Drive

Movement	WB	WB	NB	NB	NB	SB	SB
Directions Served	LT	TR	L	L	T	TR	R
Maximum Queue (ft)	415	387	244	212	217	258	237
Average Queue (ft)	288	245	137	111	102	214	127
95th Queue (ft)	389	349	211	177	178	287	236
Link Distance (ft)	849	849	253	253	253	241	241
Upstream Blk Time (\%)			0	0	0	7	0
Queuing Penalty (veh)			0	0	0	0	0
Storage Bay Dist (ft)							
Storage Blk Time (\%)							
Queuing Penalty (veh)							

Intersection: 2: Trumbull Ave \& I-94 EB Service Drive

Movement	EB	EB	EB	NB	NB	SB	SB
Directions Served	L	T	TR	T	TR	L	T
Maximum Queue (ft)	172	355	327	261	259	120	150
Average Queue (ft)	70	221	205	153	129	44	71
95th Queue (ft)	129	319	299	237	216	93	138
Link Distance (ft)	776	776	776	276	276	253	253
Upstream Blk Time (\%)				0	0		
Queuing Penalty (veh)				0	0		
Storage Bay Dist (ft)							
Storage Blk Time (\%)							
Queuing Penalty (veh)							
Network Summary							

Network wide Queuing Penalty: 0

Introduction

As part of Federal Highway Administration (FHWA) review of the Interstate 94 (I-94) Interstate Access Change Request (IACR) report, concerns were raised by FHWA Resource Center staff regarding the speed data used in the calibration and validation of a microsimulation model of existing conditions. FHWA requested the project team to review additional data, where available, to supplement the HERE data utilized in 2015.

MDOT only had historical speed data in 2012 and 2014 for I-94 WB east of $14^{\text {th }}$ St. The speed data was broken down by day and number of reads grouped within specific speed ranges. The location corresponds to segment \#27 of the HERE data in the previous existing Paramics speed summary.

Summary

MDOT data was pulled for specific days in 2012 and 2014 corresponding to field data collection dates. HERE 2-month average hourly speeds and 2-month speed ranges were overlaid on the MDOT data. The following observations were found:

- In general, MDOT speed data indicate faster speeds than HERE data based on the bin data, more so during the PM peak period.
- AM Peak Period:
- MDOT bin speed data indicates at least 20% of vehicles travel at speeds between 61-66 mph for all four hours (6-10AM) on Oct 10, 2012
- MDOT data indicates that vehicles travel at speeds between 71-76 mph for at least three of four hours on the other three dates (Nov. 7 2012, Oct. 8 2014, and Nov. 5 2014)
- HERE 2-month average speed data averages 55-60 mph for all four hours
- HERE 2-month data indicate that speeds can degrade to as slow as 31 mph during the AM peak period. This trend is not followed by the MDOT data for any of the four dates:
- MDOT data indicate that 70-90\% of vehicles travel between 51-76 mph during the AM peak period
- Almost 50\% of reported MDOT vehicle speeds (averaged for all four days) are greater than the upper bound of the HERE 2-month speed range during the AM peak period
- PM Peak Period:
- MDOT data for Oct 10, 2012 indicates that PM peak period speeds are between 6166 mph , except for 5-6PM which is closer to 41-51 mph
- Other three dates indicate that speeds from 5-7PM range from 41-51 mph
- HERE 2-month average speed data degrade from 2-3PM (48 mph) to 3-4PM (37 mph) to 4-6PM ($32-35 \mathrm{mph}$) and recovers to about 40 mph from 6-7PM
- HERE 2-month data indicate that hourly speeds can degrade to as slow as 12-17 mph from 5-7PM and 22-23 mph from 2-5PM
- MDOT data also generally has a wide range of PM peak period speeds (about 30 mph), but nothing slower than 36-41 mph with a significant percentage of the hourly speed
- About 56% of reported MDOT vehicle speeds (averaged for all four days) are greater than the upper bound of the HERE 2-month speed range during the PM peak period
The attached tables summarize the percent of vehicle reads in the $5-\mathrm{mph}$ bins as provided by MDOT. The black boxes and red number indicate the HERE data range and average speeds, respectively.

Conclusion \& Recommendation

The project team recommends to not utilize the MDOT speed data for the following reasons:

1) Limited days and only one location is available for comparison
2) A majority of the MDOT detected speeds are faster than HERE data, and that do not align with known congestion
3) The temporal pattern of MDOT speeds detected do not match the pattern of the HERE data.

l-94 Modernization

Existing Conditions
Heat Map Comparison
I-94 WB east of 14th St (HERE Segment \#27)
October 10, 2012 (Eqv PM Data Collection Date)

Hour	MDOT Speed Range (MPH)															
	0-21	21-26	26-31	31-36	36-41	41-46	46-51	51-56	56-61	61-66	66-71	71-76	76-81	81-86	86-91	91-100
12:00 AM	0\%	0\%	0\%	0\%	0\%	0\%	1\%	6\%	14\%	25\%	16\%	25\%	7\%	4\%	1\%	1\%
1:00 AM	0\%	0\%	0\%	0\%	0\%	0\%	1\%	6\%	14\%	28\%	17\%	24\%	5\%	3\%	1\%	1\%
2:00 AM	0\%	0\%	0\%	0\%	0\%	0\%	2\%	6\%	15\%	25\%	17\%	23\%	6\%	3\%	2\%	1\%
3:00 AM	0\%	0\%	0\%	0\%	0\%	0\%	2\%	7\%	13\%	21\%	16\%	26\%	8\%	4\%	3\%	1\%
4:00 AM	0\%	0\%	0\%	0\%	0\%	0\%	1\%	6\%	12\%	25\%	18\%	24\%	7\%	5\%	2\%	1\%
5:00 AM	0\%	0\%	0\%	0\%	0\%	0\%	1\%	7\%	14\%	23\%	19\%	23\%	7\%	3\%	1\%	0\%
6:00 AM	0\%	0\%	0\%	0\%	0\%	0\%	3\%	12\%	15\%	26\%	18\%	20\%	4\%	1\%	0\%	0\%
7:00 AM	0\%	0\%	0\%	0\%	0\%	1\%	7\%	17\%	18\%	24\%	18\%	12\%	1\%	0\%	0\%	0\%
8:00 AM	0\%	0\%	0\%	0\%	1\%	2\%	8\%	15\%	16\%	22\%	18\%	15\%	4\%	1\%	0\%	1\%
9:00 AM	0\%	0\%	0\%	0\%	0\%	1\%	6\%	16\%	16\%	21\%	16\%	18\%	5\%	1\%	0\%	0\%
10:00 AM	0\%	0\%	0\%	1\%	2\%	3\%	6\%	14\%	15\%	19\%	15\%	17\%	5\%	2\%	0\%	0\%
11:00 AM	0\%	0\%	0\%	0\%	0\%	1\%	5\%	15\%	16\%	21\%	14\%	21\%	6\%	2\%	0\%	1\%
12:00 PM	0\%	0\%	0\%	0\%	0\%	1\%	4\%	16\%	18\%	22\%	15\%	17\%	4\%	1\%	0\%	0\%
1:00 PM	0\%	0\%	0\%	0\%	0\%	0\%	4\%	15\%	17\%	24\%	17\%	18\%	4\%	1\%	0\%	0\%
2:00 PM	0\%	0\%	0\%	0\%	0\%	1\%	5\%	15\%	18\%	22\%	15\%	19\%	5\%	1\%	0\%	0\%
3:00 PM	0\%	0\%	0\%	0\%	0\%	2\%	9\%	16\%	19\%	22\%	15\%	13\%	3\%	1\%	0\%	0\%
4:00 PM	0\%	0\%	1\%	4\%	7\%	11\%	12\%	15\%	12\%	15\%	11\%	9\%	2\%	0\%	0\%	0\%
5:00 PM	0\%	0\%	0\%	4\%	10\%	20\%	19\%	17\%	10\%	8\%	6\%	4\%	0\%	0\%	0\%	1\%
6:00 PM	0\%	0\%	0\%	0\%	0\%	1\%	5\%	15\%	18\%	23\%	18\%	15\%	3\%	1\%	0\%	0\%
7:00 PM	0\%	0\%	0\%	0\%	0\%	0\%	5\%	13\%	17\%	22\%	16\%	20\%	5\%	1\%	0\%	0\%
8:00 PM	0\%	0\%	0\%	0\%	0\%	1\%	4\%	12\%	17\%	22\%	16\%	20\%	4\%	1\%	1\%	1\%
9:00 PM	0\%	0\%	0\%	0\%	0\%	0\%	3\%	11\%	18\%	24\%	15\%	21\%	4\%	2\%	0\%	1\%
10:00 PM	0\%	0\%	0\%	0\%	0\%	0\%	2\%	10\%	17\%	25\%	17\%	20\%	6\%	2\%	1\%	0\%
11:00 PM	0\%	0\%	0\%	0\%	0\%	0\%	1\%	8\%	15\%	25\%	15\%	24\%	8\%	3\%	1\%	1\%

Legend

$\#$
$\#$

HERE 2 Month Speed Average (Oct-Nov 2014)
HERE 2 Month Speed Range (Oct-Nov 2014)

l-94 Modernization

Existing Conditions
Heat Map Comparison
I-94 WB east of 14th St (HERE Segment \#27)
November 7, 2012 (Eqv AM Data Collection Date)

Hour	MDOT Speed Range (MPH)															
	0-21	21-26	26-31	31-36	36-41	41-46	46-51	51-56	56-61	61-66	66-71	71-76	76-81	81-86	86-91	91-100
12:00 AM	0\%	0\%	0\%	0\%	0\%	0\%	1\%	8\%	15\%	24\%	14\%	24\%	7\%	4\%	2\%	1\%
1:00 AM	0\%	0\%	0\%	0\%	0\%	0\%	1\%	7\%	15\%	22\%	16\%	22\%	8\%	5\%	2\%	1\%
2:00 AM	0\%	0\%	0\%	0\%	0\%	0\%	2\%	6\%	16\%	27\%	17\%	21\%	7\%	4\%	2\%	1\%
3:00 AM	0\%	0\%	0\%	0\%	0\%	0\%	2\%	6\%	15\%	23\%	15\%	26\%	5\%	4\%	2\%	2\%
4:00 AM	0\%	0\%	0\%	0\%	0\%	0\%	0\%	5\%	14\%	23\%	14\%	25\%	8\%	4\%	2\%	4\%
5:00 AM	0\%	0\%	0\%	0\%	0\%	0\%	1\%	4\%	13\%	20\%	17\%	29\%	9\%	4\%	1\%	1\%
6:00 AM	0\%	0\%	0\%	0\%	0\%	0\%	0\%	3\%	9\%	15\%	12\%	32\%	16\%	10\%	2\%	1\%
7:00 AM	0\%	0\%	0\%	0\%	0\%	0\%	0\%	6\%	12\%	18\%	15\%	30\%	12\%	5\%	1\%	0\%
8:00 AM	0\%	0\%	0\%	0\%	0\%	1\%	3\%	10\%	14\%	19\%	14\%	24\%	9\%	4\%	1\%	0\%
9:00 AM	0\%	0\%	0\%	0\%	0\%	1\%	5\%	13\%	16\%	19\%	14\%	21\%	7\%	2\%	1\%	1\%
10:00 AM	0\%	0\%	0\%	0\%	0\%	1\%	6\%	15\%	16\%	19\%	12\%	20\%	6\%	2\%	0\%	0\%
11:00 AM	0\%	0\%	0\%	0\%	0\%	1\%	6\%	15\%	16\%	20\%	14\%	18\%	6\%	2\%	0\%	1\%
12:00 PM	0\%	0\%	0\%	0\%	1\%	1\%	6\%	12\%	19\%	20\%	15\%	17\%	6\%	2\%	0\%	1\%
1:00 PM	0\%	0\%	0\%	0\%	0\%	1\%	8\%	16\%	19\%	21\%	15\%	15\%	4\%	1\%	0\%	0\%
2:00 PM	0\%	0\%	0\%	1\%	1\%	2\%	10\%	16\%	17\%	20\%	14\%	15\%	4\%	1\%	0\%	1\%
3:00 PM	0\%	0\%	0\%	2\%	4\%	7\%	13\%	16\%	15\%	16\%	13\%	10\%	2\%	1\%	0\%	2\%
4:00 PM	0\%	0\%	0\%	3\%	9\%	17\%	20\%	16\%	12\%	9\%	6\%	4\%	1\%	1\%	1\%	1\%
5:00 PM	0\%	0\%	1\%	6\%	18\%	28\%	27\%	13\%	3\%	1\%	0\%	1\%	1\%	1\%	1\%	1\%
6:00 PM	0\%	0\%	1\%	8\%	20\%	29\%	24\%	9\%	2\%	1\%	1\%	2\%	1\%	1\%	0\%	0\%
7:00 PM	0\%	0\%	1\%	6\%	14\%	19\%	18\%	9\%	6\%	7\%	6\%	6\%	3\%	2\%	1\%	3\%
8:00 PM	0\%	0\%	0\%	0\%	0\%	1\%	7\%	15\%	17\%	21\%	14\%	17\%	4\%	1\%	1\%	1\%
9:00 PM	0\%	0\%	0\%	0\%	0\%	1\%	4\%	11\%	17\%	25\%	16\%	18\%	5\%	2\%	0\%	0\%
10:00 PM	0\%	0\%	0\%	0\%	0\%	0\%	4\%	13\%	16\%	23\%	16\%	18\%	5\%	3\%	1\%	0\%
11:00 PM	0\%	0\%	0\%	0\%	0\%	0\%	1\%	8\%	15\%	24\%	15\%	25\%	8\%	3\%	1\%	1\%

Legend

$\#$
$\#$

HERE 2 Month Speed Average (Oct-Nov 2014)
HERE 2 Month Speed Range (Oct-Nov 2014)

l-94 Modernization

Existing Conditions
Heat Map Comparison
I-94 WB east of 14th St (HERE Segment \#27)
October 8, 2014 (PM Data Collection Date)

Hour	MDOT Speed Range (MPH)															
	0-21	21-26	26-31	31-36	36-41	41-46	46-51	51-56	56-61	61-66	66-71	71-76	76-81	81-86	86-91	91-100
12:00 AM	0\%	0\%	0\%	0\%	0\%	0\%	1\%	7\%	16\%	24\%	16\%	24\%	8\%	3\%	1\%	1\%
1:00 AM	0\%	0\%	0\%	0\%	0\%	0\%	1\%	7\%	16\%	23\%	18\%	24\%	6\%	3\%	1\%	1\%
2:00 AM	0\%	0\%	0\%	0\%	0\%	0\%	2\%	9\%	15\%	27\%	16\%	22\%	5\%	2\%	1\%	1\%
3:00 AM	0\%	0\%	0\%	0\%	0\%	0\%	1\%	4\%	13\%	30\%	13\%	26\%	7\%	4\%	1\%	0\%
4:00 AM	0\%	0\%	0\%	0\%	0\%	0\%	1\%	5\%	12\%	24\%	14\%	28\%	8\%	6\%	2\%	1\%
5:00 AM	1\%	0\%	0\%	0\%	0\%	0\%	0\%	3\%	8\%	19\%	15\%	32\%	11\%	8\%	3\%	1\%
6:00 AM	0\%	0\%	0\%	0\%	0\%	0\%	0\%	3\%	8\%	17\%	13\%	30\%	17\%	9\%	2\%	1\%
7:00 AM	0\%	0\%	0\%	0\%	0\%	0\%	2\%	9\%	13\%	20\%	16\%	27\%	8\%	3\%	0\%	0\%
8:00 AM	0\%	0\%	0\%	0\%	0\%	2\%	5\%	14\%	15\%	19\%	17\%	19\%	5\%	2\%	0\%	0\%
9:00 AM	0\%	0\%	0\%	0\%	1\%	2\%	7\%	14\%	13\%	20\%	16\%	19\%	6\%	1\%	0\%	0\%
10:00 AM	1\%	0\%	0\%	0\%	0\%	2\%	7\%	15\%	17\%	19\%	15\%	16\%	5\%	1\%	0\%	0\%
11:00 AM	1\%	0\%	0\%	0\%	0\%	1\%	6\%	17\%	16\%	20\%	15\%	17\%	5\%	2\%	0\%	0\%
12:00 PM	1\%	0\%	0\%	0\%	0\%	1\%	6\%	16\%	16\%	20\%	15\%	17\%	5\%	1\%	0\%	0\%
1:00 PM	1\%	0\%	0\%	0\%	0\%	2\%	7\%	16\%	17\%	20\%	15\%	16\%	5\%	1\%	0\%	0\%
2:00 PM	1\%	0\%	0\%	0\%	1\%	2\%	7\%	15\%	17\%	21\%	15\%	16\%	3\%	1\%	0\%	1\%
3:00 PM	1\%	0\%	0\%	1\%	3\%	7\%	12\%	19\%	16\%	16\%	11\%	9\%	2\%	1\%	0\%	1\%
4:00 PM	1\%	0\%	0\%	2\%	8\%	18\%	21\%	20\%	13\%	8\%	4\%	2\%	1\%	0\%	0\%	1\%
5:00 PM	1\%	0\%	0\%	2\%	10\%	18\%	19\%	18\%	11\%	10\%	6\%	4\%	1\%	0\%	0\%	0\%
6:00 PM	0\%	0\%	0\%	3\%	13\%	25\%	24\%	14\%	6\%	5\%	3\%	3\%	1\%	1\%	0\%	2\%
7:00 PM	1\%	0\%	0\%	3\%	9\%	19\%	19\%	14\%	10\%	9\%	6\%	7\%	2\%	1\%	0\%	1\%
8:00 PM	0\%	0\%	0\%	0\%	0\%	2\%	7\%	16\%	17\%	20\%	14\%	17\%	4\%	1\%	0\%	1\%
9:00 PM	0\%	0\%	0\%	0\%	1\%	2\%	5\%	12\%	17\%	23\%	15\%	17\%	4\%	1\%	0\%	0\%
10:00 PM	0\%	0\%	0\%	0\%	0\%	0\%	3\%	14\%	18\%	24\%	15\%	17\%	5\%	1\%	0\%	1\%
11:00 PM	0\%	0\%	0\%	0\%	0\%	0\%	2\%	9\%	16\%	26\%	16\%	20\%	7\%	2\%	1\%	0\%

Legend

$\#$
$\#$

HERE 2 Month Speed Average (Oct-Nov 2014)
HERE 2 Month Speed Range (Oct-Nov 2014)

l-94 Modernization

Existing Conditions
Heat Map Comparison
I-94 WB east of 14th St (HERE Segment \#27)
November 5, 2014 (AM Data Collection Date)

Hour	MDOT Speed Range (MPH)															
Hour	0-21	21-26	26-31	31-36	36-41	41-46	46-51	51-56	56-61	61-66	66-71	71-76	76-81	81-86	86-91	91-100
12:00 AM	0\%	0\%	0\%	0\%	0\%	0\%	2\%	8\%	17\%	23\%	16\%	22\%	7\%	3\%	1\%	1\%
1:00 AM	0\%	0\%	0\%	0\%	0\%	0\%	1\%	5\%	10\%	26\%	21\%	24\%	7\%	4\%	1\%	1\%
2:00 AM	0\%	0\%	0\%	0\%	0\%	0\%	2\%	8\%	15\%	24\%	15\%	23\%	6\%	3\%	2\%	1\%
3:00 AM	0\%	0\%	0\%	0\%	0\%	0\%	2\%	6\%	12\%	24\%	18\%	25\%	6\%	3\%	0\%	3\%
4:00 AM	1\%	0\%	0\%	0\%	0\%	0\%	1\%	6\%	15\%	23\%	16\%	25\%	8\%	5\%	1\%	0\%
5:00 AM	0\%	0\%	0\%	0\%	0\%	0\%	0\%	3\%	9\%	20\%	16\%	31\%	11\%	7\%	1\%	1\%
6:00 AM	0\%	0\%	0\%	0\%	0\%	0\%	0\%	3\%	8\%	19\%	15\%	30\%	14\%	8\%	2\%	0\%
7:00 AM	0\%	0\%	0\%	0\%	0\%	0\%	2\%	9\%	14\%	20\%	17\%	26\%	9\%	2\%	0\%	0\%
8:00 AM	0\%	0\%	0\%	0\%	0\%	1\%	6\%	12\%	15\%	20\%	16\%	22\%	6\%	1\%	0\%	0\%
9:00 AM	1\%	0\%	0\%	0\%	0\%	2\%	8\%	15\%	16\%	17\%	15\%	18\%	6\%	2\%	0\%	0\%
10:00 AM	1\%	0\%	0\%	0\%	0\%	2\%	9\%	16\%	16\%	19\%	15\%	16\%	5\%	1\%	0\%	0\%
11:00 AM	1\%	0\%	0\%	0\%	0\%	1\%	6\%	17\%	16\%	20\%	13\%	17\%	5\%	2\%	0\%	1\%
12:00 PM	1\%	0\%	0\%	0\%	0\%	2\%	9\%	17\%	16\%	20\%	15\%	15\%	4\%	1\%	0\%	0\%
1:00 PM	1\%	1\%	2\%	6\%	7\%	7\%	10\%	13\%	12\%	15\%	11\%	10\%	3\%	1\%	0\%	1\%
2:00 PM	1\%	0\%	0\%	0\%	1\%	3\%	9\%	17\%	16\%	20\%	13\%	14\%	3\%	1\%	0\%	0\%
3:00 PM	1\%	0\%	0\%	1\%	7\%	15\%	18\%	18\%	13\%	10\%	6\%	7\%	2\%	2\%	0\%	0\%
4:00 PM	1\%	0\%	0\%	4\%	15\%	28\%	27\%	16\%	6\%	2\%	1\%	0\%	0\%	1\%	0\%	1\%
5:00 PM	1\%	0\%	0\%	1\%	5\%	13\%	20\%	19\%	13\%	13\%	7\%	5\%	1\%	0\%	0\%	1\%
6:00 PM	1\%	0\%	2\%	5\%	14\%	24\%	21\%	12\%	3\%	2\%	2\%	3\%	2\%	3\%	1\%	4\%
7:00 PM	1\%	0\%	0\%	4\%	15\%	22\%	21\%	13\%	7\%	6\%	4\%	4\%	1\%	1\%	0\%	1\%
8:00 PM	0\%	0\%	0\%	0\%	0\%	1\%	8\%	15\%	17\%	20\%	15\%	16\%	5\%	2\%	0\%	0\%
9:00 PM	1\%	0\%	0\%	0\%	0\%	0\%	3\%	11\%	19\%	23\%	16\%	18\%	5\%	2\%	1\%	1\%
10:00 PM	0\%	0\%	0\%	0\%	0\%	0\%	2\%	11\%	16\%	25\%	15\%	20\%	6\%	2\%	1\%	0\%
11:00 PM	1\%	0\%	0\%	0\%	0\%	0\%	1\%	8\%	16\%	23\%	16\%	22\%	8\%	3\%	1\%	1\%

Legend

$\#$
$\#$

HERE 2 Month Speed Average (Oct-Nov 2014)
HERE 2 Month Speed Range (Oct-Nov 2014)

Roadway Design Criteria for the I-94 Detailed Engineering Report, I-96 to Conner Avenue, City of Detroit (CS 82024 - JN 32587)

Introduction and Organization

This document compiles the proposed roadway design criteria and cross-sectional elements for the I-94 Detroit Detailed Engineering Report. This criterion will be used to advance the design of the Recommended Alternative of the I-94 corridor, from I-96 to Conner Avenue in Detroit, as presented in the approved Final Environmental Impact Statement (FEIS) and Access Justification report (AJR).

1. Design Criteria Discussion Issues

During the review of the FEIS, AJR and its associated documents, CH2M HILL has determined that some design elements could be modified from current direction and tailored to provide flexibility to the project design, or incorporated to achieve project cost savings.

A. Variations from the AJR

There are several cross-sectional items that we would like to modify in order to meet current MDOT design criteria. We are requesting the following modifications to the AJR criteria.

A. 1 Superelevation Rate

The CH2M HILL team concurs with Traffic and Safety (T\&S) that 6\% superelevation is desirable due to it facilitating higher posted speeds in the future. We propose to maintain the recommendation from the AJR to use 6% and only use the 5% as a minimum in case of tight constraints prohibiting the use of 6%.

A. 2 System Interchange Ramp Cross Section

The CH2M HILL team has reviewed the recommended alternative which indicates 12^{\prime} ramp lanes with 8^{\prime} left \& right shoulders for both the single and two lane ramps within the system interchanges to support the design. The design criteria within the AJR show 16^{\prime} lane widths for single lane ramps and 12^{\prime} lane widths for two lane ramps. The AJR criteria also proposes shoulder widths of 8-12' depending on sight distance. The CH2M HILL team is proposing to utilize the criteria specified in the AJR for lane widths recognizing this could have an impact to the system interchange alignments. The proposing minimums for ramp shoulder widths are 6 ' for the left side and 8^{\prime} for the right side for the two lane ramps and 8^{\prime} for left and right sides for single lane ramps. Increasing the left shoulder width from 8^{\prime} to 12^{\prime} for sight distance consideration was evaluated but not utilized because it would add additional cost to the project and still not satisfy the sight distance requirements for the ramp geometry.

A. 3 Service Drive Cross Section

The CH2M HILL team has recommended a shed section (a unidirectional cross-slope) for the service drives, which has both lanes and shoulder at 2% sloping in the same direction down towards the ROW. The following are some advantages of implementing these changes:

- Will consolidate the need for drainage structures to one side of the roadway realizing cost savings..
- Match better with the grading/ profile of the crossroads.
- Reduce the number of superelevation transitions and points of 0% cross slope.
- Reduce the number of utility conflicts by not having to transition the drainage trunk line or installing cross leads to the other side of the roadway.
- Make it easier to construction and maintain traffic by reducing the number of drainage crossings.

Where horizontal curves are used which would normally require superelevation per MDOT standards (radius of 3150^{\prime} or less for a 30 mph design speed), the "adverse" crown will be removed (i.e. the pavement must be sloped at 1% to 2% in the direction of the curve).

B. Exceptions to Current MDOT Practices

The following items vary from standard MDOT practice. They are, however, well within the realm of proper design per AASHTO. CH2M HILL would like to propose the incorporation of the following design elements:

B. 1 I-94 Mainline Point of Rotation (POR) Location

Per MDOT guidelines for a six-lane divided freeway, the POR is located on the inside edge of the median through lane. MDOT does not have a standard plan for an eightlane divided freeway; however, the following has been the general MDOT practice for freeways greater than the six-lane divided section: to minimize superelevation transition lengths, facilitate drainage across lanes and not exceed AASHTO criteria for maximum relative gradient, the crown point and POR is proposed to be located in the middle of each roadbed (between the $2^{\text {nd }}$ and $3^{\text {rd }}$ through lanes).

B. 2 Cross slope for freeway auxiliary lanes

The general MDOT practice is to maintain the mainline 2% cross slope across the freeway auxiliary lanes. Many jurisdictions allow steeper cross-slopes for auxiliary lanes (up to 3\%) in order to provide better cross-drainage. For this project, this also provides more flexibility to achieve required underclearances. The CH2M HILL team will use 2% cross slope for all freeway and auxiliary lanes recognizing any variance will require an MDOT design exception even if it falls within AASHTO criteria.

B. 3 Right shoulder width at auxiliary lanes

Per MDOT Geometric Guideline, accel/decel lanes are not considered to be "auxiliary" lanes in the sense that AASHTO does. As such, the full mainline freeway shoulder width should be provided adjacent to the accel/decel lanes.

Per FHWA guidelines, an auxiliary lane greater than one mile in length is considered to be a through lane; therefore, all auxiliary lanes must be one mile or less in length to be considered as such.

The CH2M HILL team's approach will be to only use 8^{\prime} minimum right shoulder width along auxiliary lanes in areas where the auxiliary lane is less than one mile in length and where limited ROW is available to provide the full 12 ' shoulder width.

C. Retaining Walls Considerations

C. 1 Shortened Retaining Walls

The CH2M HILL team recognizes that the optional tiered wall concept presented in the FEIS was only used to break up the overall wall height. We understand that the public was informed during the FEIS that plantings are not feasible on these tiers, so this wall type has been removed from further study. For the shortened wall option with fill slopes, further consideration will be given for maintenance of the slope and providing positive separation from the service road and the slope.

2. Roadway Design Criteria Tables

The following tables show the proposed project Roadway Design Criteria. Tables for Freeway, Ramp, Service Drive and Local Crossroads are included.

List of Design Criteria References

AASHTO 2004, Policy on Highways and Streets

AJR - I-94 Access Justification Report, 2005
Roadside Design Guide 2002
MDOT Road Design Manual
MDOT Standard Plans
R-28-F Sidewalk Ramp and Warning Details
R-29-E Driveway Opening \& Approaches
R-30-E Concrete Curb and Concrete Curb \& Gutter
R-33-F Concrete Valley Gutter \& Urban Freeway Curb
R-49-F Concrete Barrier
R-98-B Chain Link Fence
R-107-G Superelevation and Pavement Crowns
MDOT Geometric Design Guides
GEO-110-C Two Lane Entrance Ramp
GEO-120-C Successive Entrance Ramps
VII-202A 12' Width Urban Entrance and Exit Slip Ramps
VII-205 16' Width Urban Exit Ramp
VII-240A Urban Two-Lane Exit Ramps
VII-400A Urban Diamond Interchange
VII-650C Flares and Intersection Details
GEO-680-A Commercial Driveways

Applicable for FREEWAYS

Item		Reference	I-94, I-75, M-10 Mainline
General Elements			
Roadway Classification		AASHTO 2004, p. 513	Freeway, Urban
Design Speed (mph)		Interstate Guidelines pg. 2, MDOT 3.11.03A RDM, AASHTO p. 68, p. 503	60
Stopping Sight Distance (ft)		AASHTO 2004 Ex. 3-1 p. 112	570
Cross-Sectional Elements			
General			
Existing Number of Through Lanes		N/A	3
Proposed Number of Through Lanes		N/A	4
Lane Widths (ft)		Interstate Guidelines pg. 4, MDOT RDM Appendix 3A	12
Normal Cross Slope (\%)		AASHTO 2004 pg 143, MDOT RDM Appendix 3-A	2
Normal Shoulder Slope (\%)		MDOT RDM 6.05.04, MDOT RDM 3.11.03.I	4.00
Maximum Rollover of Shoulder (\%)		MDOT SD R-107-G	$6^{(1)}$
Clear Zone Distance (ft)		RDG 3-6 (Table 3.1), MDOT 7.01.11 RDM	$1: 6$ fill: 30; 1:5,1:4 fill: $36 ; 1: 6$ cut: 26 ; 1:5,1:4 cut: $24 ; 1: 3$ cut: 20
Backslope		MDOT 2.03.01 RDM	Des: 1:4; Max: 1:2
Foreslope		MDOT 2.03.01 RDM	Des: 1:6; Max: 1:2
Shoulder Width (ft)	Left	MDOT RDM 6.05.04.C,AASHTO 2004 pgs. 314-315	Min: 12
	Right	MDOT RDM 6.05.04.C,AASHTO 2004 pgs. 314-315	12
	Auxillary ${ }^{(2)}$	MDOT RDM 6.05.04.C,AASHTO 2004 pgs. 314-315	Des: 12, Min: 8
Horizontal Clearance		AASHTO 2004, p. 507	$\begin{array}{\|c\|} \hline \text { Des. } \text { width }=\begin{array}{c} \text { normal shoulder width }+2 ' \quad \text { Min. width } \\ \\ = \end{array} \\ \hline \end{array}$
Curb and Gutter (Type \& Width)	Left	MDOT 6.06.10 RDM, MDOT SP R-33-F, R-49-F, R-76-D	Conc. Valley \& Gutter (4.0') adjacent to concrete median barrier w/ glare screen
	Right	MDOT 6.06.10 RDM, MDOT SP R-33-F	Type G2 at back of shoulder adjacent to C/F section, or ret. wall
Horizontal Alignment			
Minimum Radius (ft)		MDOT RDM 3.04.03 MDOT SP R-107-G	$\begin{aligned} & \hline 1333 \\ & 1412 \\ & \hline \end{aligned}$
Compound Circular Curve Ratio		AASHTO 2004 p. 164	2:1
Middle Ordinate for HSD (ft)		AASHTO 2004, p. 227	$\left.H S O=R\left[\left(1-\cos \frac{28.65 * S}{R}\right)\right]\right]$
Maximum Superelevation (\%)		MDOT RDM 3.04.03 MDOT SD R-107-G	$\begin{aligned} & \hline \hline 6 \% \text { (des.) } \\ & 5 \% \text { (min.) }{ }^{(3)} \\ & \hline \end{aligned}$
Vertical Alignment			
Max. Longitudinal Grade(\%)		AASHTO 2004 p. 506 exh. 8-1, MDOT 2.02.01 RDM	4
Min. Longitudinal Grade(\%)		AASHTO 2004 pg. 236, MDOT 2.02.01 RDM, MDOT RDM Appendix 3A	Curbed: 0.3 (min), 0.5 (des. min.)
Min. length of curve (ft)		AASHTO 2004, p. 269, MDOT RDM 2.02.02	180
Design Curve K-Value (Crest)		AASHTO 2004 Exh. 3-72 p. 272	151
Design Curve K-Value (Sag)		AASHTO 2004 Exh. 3-75 p. 277	136
Min. Vertical Clearance Freeway (over) (ft)		MDOT 3.12 RDM, MDOT 7.01.08 BDM	Special Route Des: $14^{\prime} 9^{\prime \prime}$ Min: 14'6"
Min. Vertical Clearance Freeway (under) (ft)		MDOT 3.12 RDM, MDOT 7.01.08 BDM	Special Route Des: $14^{\prime} 9^{\prime \prime}$ Min: $14^{\prime} 6^{\prime \prime}$

${ }^{(1)}$ Any shoulder rollover break greater than 6% will require an MDOT design exception. AASHTO allows an 8% maximum shoulder rollover break.
${ }^{(2)}$ A auxiliary lane must be <= 1.0 mile in length
${ }^{(3)} 6 \%$ will be used wherever possible, 5% will be used as a min. in case there are areas of 6% that are problematic due to transition length or placement and underclearance.

Applicable for RAMPS

Item		Reference		
General Elements				
Roadway Classification		AASHTO 2004	System Interchange Ramp	Slip Ramp
Design Speed (mph)		MDOT 3.07.02 RDM, AASHTO 2004 Exh. 10-56, AASHTO 2004 p. 826	40	45 mph min at Mainline Intersection 30 mph min at Serv Dr Intersection
Stopping Sight Distance (ft)		AASHTO 2004, Ex. 3-1, p. 112	360	360
Acceleration/Deceleration Lengths		GDG	VII-202, VII205, VII-240	VII-202, VII205, VII-240
Ramp Terminal Spacing		AJR	varies, see AJR	varies, see AJR
Shoulder Width Transition Rate		GDG	1:15 min, 1:25 des	1:15 min, 1:25 des
Cross-Sectional Elements				
General				
Lane Widths (ft)		2004 AASHTO, Ramp Traveled-Way Widths. pp. 842-843. Exhibit 10-67 Tvpical	1 lane: 16' 2: lane 24'	1 lane: 12' (if slip ramp, otherwise 16')
Cross Slope (\%)		AASHTO 2004 pg 143, MDOT RDM Appendix 3-A	2.00	2.00
Normal Shoulder Slope (\%)		MDOT RDM Appendix 3-A	4.00	4.00
Maximum Rollover of Shoulder (\%)		MDOT SD R-107-G	6.00	6.00
Clear Zone Distance (ft)		RDG 3-6 (Table 3.1) MDOT 7.01.11 RDM	1:6 fill: 20; 1:5,1:4 fill: 24; $1: 6$ cut: 20 ; 1:5,1:4 cut: 18; $1: 3$ cut: 15	1:6 fill: 20; 1:5,1:4 fill: 24; 1:6 cut: 20 ; 1:5,1:4 cut: 18 ; $1: 3$ cut: 16
Backslope		MDOT 2.03.01 RDM, MDOT R 105-D	Des: 1 on 4 Max: 1 on 3	Des: 1 on 4 Max: 1 on 3
Foreslope		MDOT 2.03.01 RDM, MDOT R-105-D	Des: 1 on 6 Max: 1 on 2	Des: 1 on 6 Max: 1 on 2
Shoulder Width (ft)	Left	AASHTO 2004, p. 839-840, MDOT RDM Appendix 6-A	6-12 ft dep on sight dist	1 lane: 0 (curb)
	Right	AASHTO 2004, p. 839-840, MDOT RDM Appendix 6-A	8-12 ft dep on sight dist	1 lane: 5 (slip ramp only)
Horizontal Clearance		AASHTO 2004, p. 838-840	$\begin{aligned} & \text { Min. width = normal shoulder } \\ & \text { width } \\ & \hline \end{aligned}$	Min. width = normal shoulder width
Curb and Gutter	Left	MDOT RDM Appendix 6-A, MDOT R-30-E	Curb Type D or Valley Gutter, Conc	Curb and Gutter, Type D
	Right	MDOT RDM Appendix 6-A, MDOT R-30-E	Curb Type G or Valley Gutter, Conc	Curb and Gutter, Type G1
Horizontal Alignment				
Minimum Radius (ft)		MDOT RDM 3.04.03 MDOT SP R-107-G	643	643
Compound Circular Curve Ratio		AASHTO 2004 p. 164	2:1	2:1
Middle Ordinate for HSD (ft)		AASHTO 2004, p. 227	HSO $\left.=R\left[\left(1-\cos \frac{28.65 * S}{R}\right)\right]\right]$	$\left.H S O=R\left[\left(1-\cos \frac{28.65 * S}{R}\right)\right]\right]$
Maximum Superelevation (\%)		$\begin{aligned} & \hline \text { MDOT RDM 3.04.03 } \\ & \text { MDOT SD R-107-G } \end{aligned}$	6 (Note: All Loop Ramps use 7\%)	6 (Note: All Loop Ramps use 7\%)
Vertical Alignment				
Max. Longitudinal Grade(\%)		AASHTO 2004 p. 829, MDOT 2.02.01 RDM	5	5
Min. Longitudinal Grade(\%)		AASHTO 2004 pg. 236, MDOT 2.02.01 RDM. MDOT RDM Appendix 3A	Curbed: 0.3 (min), 0.5 (des. min.)	Curbed: 0.3 (min), 0.5 (des. min.)
Min. length of curve (ft)		AASHTO 2004, p. 269, MDOT RDM 2.02.02	135	135
Design Curve K-Value (Crest)		AASHTO 2004 Exh. 3-72 p. 272	61	61
Design Curve K-Value (Sag)		AASHTO 2004 Exh. 3-75 p. 277	79	79
Min. Vertical Clearance Ramp (over) (ft)		MDOT 3.12 RDM, MDOT 7.01.08 BDM	Special Route Des: 14'9" \quad Min: 14'6"	Special Route $14{ }^{\prime \prime}$ Min: 14'6" Des:
Min. Vertical Clearance Ramp (under) (ft)		MDOT 3.12 RDM, MDOT 7.01.08 BDM	Special Route Des: 14'9" Min: 14'6"	Special Route Des: 14'9" Min: 14'6"

*These are median values for ramp design speed from AASHTO guidelines. Each ramp will have its own design speed established, with the minimums listed as a starting point.

Applicable for SERVICE DRIVES

Item		Reference	Service Drives
General Elements			
Roadway Classification		AASHTO 2004, p. 419	Urban Collector
Design Speed (mph)		AASHTO 2004, p. 430	30
Stopping Sight Distance (ft)		AASHTO 2004, Ex. 3-1, p. 112	200
Design Vehicle		Type of Intersection: Trunkline (M-1, M-3, M-53) Collectors (Linwood, Mt. Elliot, East Grand Blvd., Conner) All other local intersections	WB-62 WB-50 BUS
Intesection Sight Distance		Signalized (AASHTO 2004, p. 671)	First vehicle stopped on approaches (Stop Bar) Left/Right Turns ISD $=355$
		All-way Stop (AASHTO 2004, p. 674)	First vehicle stopped on approaches (Stop Bar)
Cross-Sectional Elements			
General			
Lane Widths (ft)		AASHTO 2004, p. 433, MDOT RDM Appendix 3-A	11
Cross Slope (\%)		AASHTO 2004 pg 143, MDOT RDM Appendix 3-A	2.00
Normal Shoulder Slope (\%)		MDOT RDM Appendix 3-A	2.00 (utilized as multiuse lane for non-motorized/transit traffic)
Maximum Rollover of Shoulder (\%)		MDOT SD R-107-G	6.00
Shoulder Width (ft)	Left	MDOT RDM 6.05.04C, AJR, AASHTO 2004, p. 433	0 (curb)
	Right	MDOT RDM 6.05.04C, AJR, AASHTO 2004, p. 434	8
Curb and Gutter (Type \& Width)		MDOT 6.06.09 RDM, MDOT R-30-E, AJR	Curb Type F3, 2.0
Sidewalk Width - Min (ft)		AJR	6
Horizontal Clearance (ft)		AASHTO 2004, p. 437	1.5 ' min, 2' des. (beyond face of curb)
Horizontal Alignment			
Minimum Radius (ft)		AASHTO 2004, Exh. 3-16 , p. 151	thomas
Compound Circular Curve Ratio		AASHTO 2004 p. 164	2:1
Middle Ordinate for HSD (ft)		AASHTO 2004, p. 227	$H S O=R\left[\left(1-\cos \frac{28.65 * S}{R}\right)\right]$
Maximum Superelevation (\%)		MDOT SD R-107-G	2.00
Vertical Alignment			
Max. Longitudinal Grade(\%)		AASHTO 2004, Exh. 6-8 p. 432, MDOT RDM Appendix 3-A	9
Min. Longitudinal Grade(\%)		AASHTO 2004 pg. 236, MDOT 2.02.01 RDM, MDOT RDM Appendix 3A	Curbed: 0.3 (min), 0.5 (des. min.)
Min. length of curve (ft)		AASHTO 2004, p. 269, MDOT RDM 2.02.02	90
Design Curve K-Value (Crest)		AASHTO 2004 Exh. 3-72 p. 272	19
Design Curve K-Value (Sag)		AASHTO 2004 Exh. 3-75 p. 277	37
Min. Vertical Clearance Side Road/Service Drive (over) (ft)		MDOT 3.12 RDM, MDOT 7.01.08 BDM	Special Route Des: 14'9" Min: $14^{\prime} 6^{\prime \prime}$
Min. Vertical Clearance Side Road/Service Drive (under) (ft)		MDOT 3.12 RDM, MDOT 7.01.08 BDM	Special Route Des: 14'9" Min: 14'6"

Applicable for Crossroads

Item	Reference			
General Elements		Various applicable Design Speeds shown -- detail per actual crossroad forthcoming during design		
Roadway Class	AASHTO 2004, p. 419	Urban Collector	Urban Collector	Urban Collector
Design Speed (mph)	AASHTO 2004, p. 430	30	35	40
Stopping Sight Distance (ft)	AASHTO 2004, Ex. 3-1, p. 112	200	250	305
Cross-Sectional Elements				
Roadway Approach Lane Widths (ft)	FEIS Recommended Alternative	11	11	12
Cross Slope (\%)	AASHTO 2004 pg 143, MDOT RDM Appendix 3-A	2.0	2.0	2.0
Normal Shoulder Slope (\%)	MDOT RDM Appendix 3-A	4.0	4.0	4.0
Maximum Rollover of Shoulder (\%)	MDOT SD R-107-G	6.0	6.0	6.0
Right Shoulder Width (ft)	MDOT RDM 6.05.04C, AASHTO 2004, p. 433	0 (curb)	0 (curb)	0 (curb)
Left Shoulder Width (ft)		0 (curb)	0 (curb)	0 (curb)
Curb and Gutter (Type \& Width)	MDOT RDM 6.06.06C, MDOT R-30-E, AJR	F3 (2.0)	F3 (2.0)	F3 (2.0)
Horizontal Clearance (ft)	AASHTO 2004, p. 437	1.5	1.5	1.5
Sidewalk Width-Min (ft)	RDM 12.12.04D	6	6	6
Horizontal Alignment				
Minimum Radius (ft)	AASHTO 2004, Exh. 3-16 , p. 151	273	408	593
Compound Circular Curve Ratio	AASHTO 2004 p. 164	2:1	2:1	2:1
Middle Ordinate for HSD (ft)	AASHTO 2004, p. 227	$H S O=R\left[\left(1-\cos \frac{28.65 * S}{R}\right)\right]$	$H S O=R\left[\left(1-\cos \frac{28.65 * S}{R}\right)\right]$	HSO $=R\left[\left(1-\cos \frac{28.65 * S}{R}\right)\right]$
Maximum Superelevation (\%)	MDOT SD R-107-G \& AASHTO 2004 p. 151, Ex. 3-16	2 (min.)	2 (min.)	2 (min.)
Vertical Alignment				
Max. Longitudinal Grade(\%)	AASHTO 2004, Exh. 6-8 p. 431, MDOT RDM Appendix 3-A	5.0	5.0	5.0
Min. Longitudinal Grade(\%)	AASHTO 2004 pg. 236, MDOT 2.02.01 RDM, MDOT RDM Appendix 3A	Curbed: 0.3 (min), 0.5 (des. min.)	Curbed: 0.3 (min), 0.5 (des. min.)	Curbed: 0.3 (min), 0.5 (des. min.)
Min. length of curve (ft)	AASHTO 2004, p. 269, MDOT RDM 2.02.02	90	105	120
Design Curve K-Value (Crest)	AASHTO 2004 Exh. 3-72 p. 272	19	29	44
Design Curve K-Value (Sag)	AASHTO 2004 Exh. 3-75 p. 277	37	49	64
Min. Vertical Clearance Crossroad (over) (ft)	MDOT 3.12 RDM, MDOT 7.01.08 BDM	Special Route Des: 14'9" Min: 14'6"	$\begin{array}{cc}\text { Special Route } \\ \text { Des: } 14 \text { '9" } & \text { Min: } 14 \text { '6" }\end{array}$	Special Route Des: $14^{\prime \prime 9 "} \quad$ Min: $14{ }^{\prime \prime} 6^{\prime \prime}$

I-94 Traffic Volume Forecasting

NO. MDOT - TM 3

May 6, 2015
MDOT JN: 122114
Control Section: 82024
Author: Mark Smith, PE, PTOE
Reviewers: Karianne Steffen, PE, PTOE
Matt Simon, PE

Background:

As part of the I-94 Modernization Project Owners Representative Work Task \#1, Subtask 2.2 Traffic, this technical memorandum is intended to document the assessment of SEMCOG's 2010 and 2040 Travel Demand Models (TDM) and the discussions with MDOT and SEMCOG on March 6, 2015, March 13, 2015, and May 1, 2015 regarding traffic volume forecasting along the I-94 study corridor.

Existing Project Data:

The limits of the I-94 Modernization Project are located in the City of Detroit between I-96 and Conner Ave, which is approximately seven miles in length, as shown in Figure 1 below. I-94 is currently stripped as a six (6) lane urban freeway that carries three (3) lanes of westbound traffic and three (3) lanes of eastbound traffic. Within these seven miles of urban freeway there are over 50 ramp entrances/exits along the I-94 corridor. Existing traffic conditions indicate that demand for the I-94 corridor has exceeded the available capacity limits given the heavy congestion experienced during the AM and PM peak periods. The recurrent congestion on the $\mathrm{I}-94$ corridor has resulted in a diversion of trips from the I-94 corridor to adjacent facilities. It is expected that once additional capacity is added with the l-94 Modernization Project a large volume of traffic will shift back to the l-94 corridor that had previously diverted due to the heavy congestion.

Figure 1: I-94 Modernization Project Limits

Assessment of SEMCOG Travel Demand Models:

Traffic assignments were obtained from SEMCOG's 2010 and 2040 Travel Demand Models (TDM) to evaluate traffic volume growth along the I-94 study corridor. For background traffic growth the TDM projected a growth rate of 0.07\% per year (compounded annually) from 2010 to 2040, prior to the construction of the I-94 Modernization Project. The TDM also projected a growth rate of 0.16% per year (compounded annually) from 2010 to 2040, which is expected after the completion of the I-94 Modernization Project. The traffic projections account for growth due to long term traffic pattern changes plus the socio-economic growth in the I-94 impact area. The l-94 corridor will also see an increase in traffic due to diverted demand that is currently using adjacent facilities. The SECMOG TDM model estimates that I-94 mainline traffic volumes are projected to increase by 23% to 27% depending on when I-94 modernization project is completed (i.e. if project was completed in 2010 traffic shift would have been 23%, if project is completed in 2040 traffic shift is expected to be 27%). Table 1 below summarizes the projected traffic increases for the I-94 corridor. The total traffic increase is based on the average of the annual growth rate and the traffic shift due to the diverted demand since the final completion date of the I-94 Modernization Project is unknown.

Table 1: I-94 Projected Traffic Volume Increases

	Annual Growth Rate $(2010-2040)$	Traffic Shift due to Diverted Demand	Total Traffic Increase $(2010-2040)$
I-94 Modernization Project	$0.07 \%-0.16 \%$ Per Year	23% to 27%	29%

The projected traffic volume increases from SEMCOG's TDM were developed in 2010, during a time of recession. Recent economic changes in Detroit's Midtown area and surrounding communities are not reflected in these projections.

Based on the review of SEMCOG's TDM, the corridor analysis provides the expected traffic growth along the l-94 study corridor. The growth determined from the corridor analysis is limited to the mainline freeway lanes as the level of detail within the TDM does not provide accurate traffic volume projections for surface streets and ramps. Given the limitations of the SEMCOG TDM, separate forecasting methodologies will be used for the I-94 freeway and surface streets / ramps.

Traffic Volume Forecasting Methodology:

I-94 Freeway Traffic Volume Forecasting Methodology

1. Growth rates from SEMCOG's Corridor Analysis (shown in Table 1) will be used to forecast 2040 build I-94 mainline traffic volumes.

I-94 Service Drive and Ramp Traffic Volume Forecasting Methodology

Given the limitations of the TDM to accurately project traffic volumes for the surface streets and ramps, several methods were analyzed for forecasting traffic on the I-94 Service Drives and I-94 Ramps which included:

- Comparing 2010 and 2040 SEMCOG TDM's to evaluate growth based on population, socioeconomic data, and vehicle miles travel within the I-94 study area.
- Reviewing existing traffic volumes within the I-94 study area where continuous service drives exist to estimate volumes for proposed continuous service drives.

May 6, 2015

- Reviewing existing traffic travel patterns within the I-94 study area to estimate directional distribution percent's for future.
- Reviewing the recently constructed I-96 project in Livonia.
- Minimum safety standards for a service drive would require two lanes for emergency access.
- Best traffic planning and engineering practices

It was suggested that a subarea micro-simulation model could be used. While a subarea microsimulation model would be the best way to forecast traffic volumes for the surface streets and ramps it would also require an extensive amount of data that is not available. A subarea microsimulation model would require the collection of additional traffic volumes for all significant alternate routes in the Detroit area surrounding the I-94 corridor. The limits of a subarea model could extend as far as the borders of the map shown previously in Figure 1. In addition to the data collection there would also be a large effort to calibrate the model before it could be used.

With the inherent schedule delays that a subarea micro-simulation model would create it was agreed on May 1, 2015 with MDOT and SEMCOG that triangulating the methods analyzed above would be an acceptable approach to forecast traffic for the I-94 Service Drives and I-94 Ramps in place of a subarea micro-simulation model.

Therefore, based on discussions with MDOT and SEMCOG on May 1, 2015 the proposed methodology for forecasting traffic for the I-94 Service Drives and I-94 Ramps is outlined below. Both MDOT and SEMCOG were in agreement on this approach:

1. A total of 1,000 thru vehicles per hour (VPH) will be applied to the l-94 Service Drives during the AM and PM peak hours. The 1,000 thru vehicles is based on existing peak hour traffic volumes counted at the Chene St and Mt. Elliott St intersections with the I-94 eastbound and westbound service drives. Chene St and Mt. Elliott St were used to develop the thru VPH based on the existing continuous service drives at these locations.
2. Projected directional distributions were developed, as shown in Table 2, based on an evaluation of existing traffic volumes and anticipated travel pattern impacts from the proposed continuous service drives. The directional distributions will be applied to the 1,000 thru VPH to assign peak hour thru volumes on the eastbound and westbound I-94 Service Drives.

Table 2: I-94 Service Drive Projected Directional Distributions

Location	Direction Distribution	
	AM Peak Hour	PM Peak Hour
West of M-10		
WB I-94 Service Drive	40%	60%
EB I-94 Service Drive	60%	40%
Between M-10 and M-1 (Woodward Ave)		
WB I-94 Service Drive	45%	55%
EB I-94 Service Drive	55%	45%
East of M-1 (Woodward Ave)		
WB I-94 Service Drive	60%	40%
EB I-94 Service Drive	40%	60%

Page 3 of 4
File: 50989-DS-001(External)
3. To develop peak hour turning movement volumes at the study area intersections, 10% of the service drive thru traffic volume will be used. The peak hour turning movement percentage was developed based on review of existing turning movement counts at low volume intersections on the I-94 corridor and the Trumbull Ave Bridge evaluation. Additionally, the I-96 reconstruction project (Newburg Rd to Melvin St) in Livonia was reviewed to confirm the proposed methodology for the I-94 corridor. A review of the I-96 project found that when distributing turning volumes to adjacent signals it was assumed that 10% turned left and 10% turned right which matches the proposed methodology for the I-94 corridor. This methodology will only be used if the existing turning movements are lower than 10% of the service drive thru volume otherwise the existing volume will be used. Two examples of the I-94 Eastbound Service Drive, east of M-1 (Woodward Ave), are shown in Figure 2.

Figure 2 - Example of Turning Movement Volume Development

In addition to the forecasting methods described above, a minimum annual growth rate of 0.16% per year (compounded annually) will be used to forecast I-94 Service Drives, local roads, and I94 Ramps for the AM and PM peak periods. The minimum annual growth rate of 0.16\% matches the highest annual growth that is anticipated for the l-94 Freeway. All adjustments will be made to the existing (2014) traffic volumes to account for the proposed roadway modifications before applying the 0.16% annual growth rate to develop projected 2040 build traffic volumes.

TECHNICAL MEMORANDUM

Existing (2014) Paramics Assessment and Model Calibration for I-94

NO. MDOT - TM 8

May 21, 2015
MDOT JN: 122114
Control Section: 82024

Author: Eric Youngblom Jordan Williams
Reviewer: Rob Beuthling, PE Jason Kessler, PE

Background:

This technical memorandum has been prepared as part of the I-94 Modernization Project Owners Representative Work Task \#1, Subtask 2.2 Traffic. The purpose of this report is to document the calibration and validation of the Existing (2014) Paramics model for the study area corridor. Details in this report include review of the MOTSIM (Maintenance of Traffic Simulation) model received from MDOT on October 23, 2014, development of base year volumes, development of target speed profiles, Paramics inputs, validation results, and observations for the Existing AM and PM conditions.

1. Introduction .. 2
2. Paramics Model Inputs.. 4
2.1. Model Scoping ... 4
2.2. MOTSIM Model... 6
2.3. Volume Development.. 9
2.4. Speed Data.. 13
2.5. Traffic Control .. 14
3. Calibration... 15
4. Validation Results .. 17
5. Operational Observations ... 21

1. Introduction

The limits of the I-94 Modernization Project are located in the City of Detroit between I-96 and Conner Ave, which is approximately seven miles in length, as shown in Figure 1 below. I-94 is currently striped as a six (6) lane urban freeway that carries three (3) lanes of westbound traffic and three (3) lanes of eastbound traffic. Within these seven miles of urban freeway there are over 50 ramp entrances/exits along the l-94 corridor including three (3) system to system interchanges at $\mathrm{I}-96, \mathrm{M}-10$, and $\mathrm{I}-75$.

Figure 1: I-94 Modernization Project Limits

This report documents the calibration and validation of the Existing (2014) Paramics models for the study area corridor. Details in this report include review of the MOTSIM (Maintenance of Traffic Simulation) model received from MDOT, development of base year volumes, development of target speed profiles, Paramics inputs, validation results, and observations for the Existing AM and PM conditions. The calibration process is summarized in the Figure 2 below. The process uses the Existing Paramics model from MDOT and applies updated volumes to develop the corridor model. The model was then modified to match the observed volumes and observed speeds through network and variable manipulation. The calibration approach follows FHWA guidelines outlined in the Traffic Analysis Toolbox Volume III: Guidelines for Applying Traffic Microsimulation Modeling Software.

Figure 2: Paramics Model Coding \& Calibration

2. Paramics Model Inputs

2.1. Model Scoping

The model extents were established to assess the mainline operational needs within the Project's study area. Service interchanges and portions of the service drive system are included in the model to get proper platooning at the entrance ramps. To evaluate vehicle operations on the Interstate facility, the model uses an all-or-nothing traffic assignment. This traffic assignment provides the model a static volume set and is not meant to evaluate real time routing decisions that allow vehicles to use the service drive or other alternative routes.

Based on a FHWA guidelines, the hours of simulation for the AM and PM peak periods were established to capture the full period of congestion for each peak. These hours were determined from Nokia's HERE travel time data. Based on HERE travel time data the AM and PM peak periods are defined as 6-10 AM and 2-7 PM. Figure 3 and Figure 4 shown below represents speeds in 5 minute increments along the Y -axis, and geographic locations along the $\mathrm{I}-94$ corridor on the X -axis.

Figure 3: AM HERE Speeds for Tuesday - Thursday in October - November 2014

$\begin{aligned} & \sigma \\ & 3 \\ & 3 \\ & 3 \\ & 0 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	59	58	61	58	60	59	54	55	58	58	61	59	59	61	63
	56	51	55	57	60	58	57	54	57	59	60	60	61	60	60
	60	57	62	62	62	58	52	54	57	58	58	58	59	57	60
	60	55	54	54	57	56	54	49	61	63	62	63	62	55	60
	59	53	52	56	56	55	50	51	58	60	58	59	62	60	60
	59	56	53	54	61	57	51	52	60	59	59	57	59	52	61
	59	57	51	55	59	56	51	50	55	61	59	60	60	57	61
	62	59	54	56	61	58	53	53	57	59	57	60	60	59	61
	59	49	46	47	53	55	50	49	57	60	60	60	57	61	61
	56	53	48	49	52	53	49	50	54	55	57	56	57	58	59
	57	49	45	48	52	53	49	48	56	61	59	61	58	60	62
	55	50	43	48	51	52	50	49	55	58	58	60	61	58	61
$\begin{aligned} & V \\ & 3 \\ & 3 \\ & \vdots \\ & \infty \\ & \infty \\ & 3 \end{aligned}$	54	51	49	48	52	54	51	51	55	57	58	58	59	59	60
	55	49	42	46	51	53	47	49	55	58	58	59	60	59	59
	54	47	39	43	48	51	46	49	57	57	57	59	60	59	60
	51	40	32	40	47	50	49	51	58	61	58	62	62	61	60
	46	30	31	39	50	50	47	49	58	60	59	61	63	60	63
	36	28	30	37	45	52	47	49	60	56	57	60	61	55	61
	38	22	27	40	49	53	45	51	57	58	58	59	61	60	60
	32	25	30	38	46	51	48	51	58	56	56	58	58	62	59
	34	24	31	38	46	52	47	51	59	60	57	59	64	61	61
	30	21	24	37	45	53	46	51	58	61	59	59	60	56	58
	26	21	27	35	46	51	42	51	57	59	59	60	57	56	61
	27	21	25	39	46	52	47	52	57	60	60	60	60	60	61
3	28	20	28	37	44	51	49	51	56	59	57	59	61	60	59
	32	23	29	37	44	51	48	53	55	61	61	61	60	60	60
	28	23	29	39	47	51	47	49	58	58	56	61	60	60	60
	28	20	27	37	47	52	45	51	59	59	57	57	60	59	60
	31	23	29	35	44	49	44	52	58	58	59	61	61	53	64
	30	23	27	38	47	53	49	51	55	57	57	59	60	59	62
	29	22	25	34	45	52	46	51	56	59	59	61	61	62	64
	30	22	29	37	47	51	46	51	55	57	57	60	58	59	61
	32	26	31	41	47	52	44	50	59	60	59	60	61	56	62
	29	24	30	39	47	47	44	49	60	61	58	62	60	55	63
	36	26	29	41	48	51	47	53	60	59	58	59	59	60	61
	36	24	29	38	45	51	45	49	57	60	59	63	62	62	59
3	40	23	30	40	49	52	46	49	54	59	57	56	60	56	60
	43	25	29	39	47	52	45	50	56	61	59	61	60	61	60
	44	29	33	41	49	52	46	49	55	57	56	60	61	60	62
	48	32	33	38	48	49	45	52	57	56	56	59	60	61	62
	50	36	34	43	46	51	45	48	56	58	57	58	61	58	62
	54	38	35	44	51	51	47	49	55	57	54	60	60	56	61
	55	47	39	45	50	53	46	51	57	58	59	60	61	59	59
	56	49	38	47	51	53	48	51	55	59	54	59	63	61	62
	56	47	47	51	55	54	48	52	56	58	57	58	59	56	56
	56	52	46	49	54	54	47	50	55	59	60	58	61	59	61
	54	51	47	52	55	55	48	52	56	59	59	59	60	60	62
	57	53	48	52	55	55	45	52	56	61	60	58	58	58	60
			$\begin{aligned} & \stackrel{\rightharpoonup}{+} \\ & \stackrel{y}{\square} \\ & \stackrel{4}{5} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{J} \\ & \text { id } \\ & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{\star} \end{aligned}$		W W 0 0 3 \vdots \vdots	$\underset{\pi}{2}$	$\begin{aligned} & \text { mix } \\ & \frac{0}{0} \\ & \stackrel{1}{4} \end{aligned}$	$\begin{aligned} & \stackrel{?}{7} \\ & \stackrel{0}{n} \\ & \stackrel{0}{n} \end{aligned}$		$\begin{aligned} & \text { ? } \\ & \text { W } \\ & \text { 崔 } \end{aligned}$				$\begin{aligned} & \stackrel{1}{n} \\ & \frac{2}{2} \\ & \frac{2}{3} \\ & \frac{1}{4} \end{aligned}$

Eastbound

$\begin{aligned} & \sigma \\ & 8 \\ & 3 \\ & 0 \\ & 0 \\ & 1 \\ & 3 \\ & 3 \end{aligned}$	65	62	64	62	65	60	55	57	61	62	62	60	62	64	65
	62	63	67	62	59	59	57	59	58	62	60	61	65	61	61
	63	63	62	57	60	57	55	55	57	60	60	60	61	63	63
	58	62	60	62	61	59	56	58	59	60	56	58	57	57	58
	63	64	63	62	62	58	55	55	54	55	53	56	57	55	49
	58	59	57	60	61	57	52	55	53	52	53	54	53	53	52
	62	63	68	62	63	57	54	55	51	53	52	52	53	51	50
	63	61	59	59	62	56	51	52	52	48	51	48	51	49	43
	60	58	54	56	57	56	50	51	52	50	46	45	49	45	37
	62	58	63	58	59	54	49	50	49	50	41	43	45	48	42
	58	58	57	56	54	55	50	52	49	49	45	46	44	44	43
	61	58	56	59	56	56	52	55	51	49	49	48	51	48	41
	62	58	63	57	60	56	52	54	51	48	47	48	51	46	44
	60	60	58	59	58	54	50	53	49	47	46	46	48	47	43
	60	59	57	56	55	53	49	52	48	47	43	45	43	44	40
	59	57	57	56	54	56	50	50	47	45	41	35	37	41	40
	63	59	59	57	59	53	49	51	46	42	40	37	37	41	35
	60	58	61	58	58	54	43	48	45	44	39	34	35	38	35
	57	57	59	52	53	52	43	48	46	40	40	35	34	34	32
	59	60	60	56	55	53	44	50	45	40	33	27	31	33	30
	59	59	59	56	59	54	47	47	43	38	37	34	32	27	31
	59	58	57	57	59	55	49	47	41	43	38	33	31	28	22
	62	58	59	57	62	55	49	49	45	41	34	31	28	27	26
	61	58	61	61	60	56	50	52	46	38	34	33	30	27	31
$\begin{aligned} & \infty \\ & 1 \\ & 3 \\ & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 3 \end{aligned}$	57	59	54	55	59	54	51	52	45	40	36	31	29	30	28
	56	57	58	56	56	54	50	49	45	40	40	24	34	30	30
	60	57	55	56	59	53	51	49	42	39	39	35	30	29	29
	59	58	54	55	55	53	49	50	43	39	35	37	39	36	24
	60	59	57	57	58	55	51	51	43	40	33	32	29	35	33
	58	55	60	56	57	54	49	49	41	39	36	35	36	31	25
	57	57	59	52	57	54	45	47	40	40	39	33	29	33	25
	58	57	55	56	56	51	49	50	42	38	38	35	29	34	32
	59	57	61	59	57	53	47	47	41	36	33	33	37	35	32
	61	57	58	56	53	51	46	45	41	39	38	36	38	37	36
	60	55	57	52	57	53	47	47	42	41	41	40	38	40	36
	59	58	55	57	57	55	48	49	44	41	42	42	41	41	42
$\begin{aligned} & 6 \\ & 2 \\ & 3 \\ & 0 \\ & 0 \\ & \stackrel{\rightharpoonup}{0} \\ & 3 \\ & 3 \end{aligned}$	61	58	59	58	59	54	47	49	45	42	44	40	43	46	45
	61	56	61	54	58	55	51	49	43	45	45	44	46	49	47
	60	59	58	56	55	52	48	47	43	42	45	40	45	49	49
	59	59	60	56	54	53	48	49	46	47	45	47	46	46	50
	61	56	58	54	58	50	49	50	48	47	46	51	48	51	52
	60	58	57	57	58	53	47	49	47	49	51	50	51	53	54
	61	57	57	55	59	53	47	50	47	51	54	54	54	51	50
	58	59	60	59	59	55	48	48	51	51	50	53	49	52	59
	58	58	60	57	57	54	48	50	51	52	54	54	53	55	56
	57	57	59	57	58	56	50	51	53	52	54	56	51	52	53
	59	57	55	58	58	55	49	51	51	52	53	52	49	52	56
	55	57	57	57	60	57	51	53	54	54	54	53	54	57	57
			$\begin{aligned} & \stackrel{\rightharpoonup}{+} \\ & \stackrel{5}{4} \\ & \stackrel{~}{4} \end{aligned}$			M $\stackrel{3}{\bullet}$ 0 3 \vdots \vdots	$\begin{aligned} & \frac{1}{2} \\ & \stackrel{0}{3} \\ & \underset{\sim}{7} \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{t} \\ & \stackrel{2}{0} \\ & \stackrel{\rightharpoonup}{\omega} \\ & \hline \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{c} \\ & \text { w } \\ & \text { 会 } \end{aligned}$				

Westbound

Figure 4: PM HERE Speeds for Tuesday - Thursday in October - November 2014

Eastbound

$\begin{aligned} & N \\ & 0 \\ & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 3 \end{aligned}$	59	55	57	55	54	54	48	51	54	53	54	58	59	56	57
	62	56	54	52	55	53	49	54	56	54	53	56	54	55	45
	60	54	54	53	54	51	49	52	54	51	54	59	58	54	54
	60	55	51	50	52	51	48	50	53	53	52	56	57	53	54
	59	53	53	47	51	48	45	50	50	53	55	57	54	56	62
	57	53	52	50	53	46	43	49	51	51	55	55	59	57	57
	57	55	53	50	51	48	45	43	50	53	53	58	58	56	55
	61	54	51	47	46	49	41	44	45	53	55	58	56	57	59
	56	50	48	42	42	45	35	44	45	48	54	57	58	58	60
	59	55	52	43	42	45	41	46	45	47	57	58	59	56	61
	54	54	45	43	43	42	43	47	46	50	56	60	57	60	59
	61	56	53	44	42	46	47	49	46	47	55	57	57	59	60
$\begin{aligned} & \omega \\ & 0 \\ & 3 \\ & + \\ & + \\ & + \\ & \square \\ & \hline \end{aligned}$	57	53	51	43	38	43	45	50	48	51	56	58	57	59	61
	59	54	51	40	33	41	45	50	52	52	56	56	59	59	61
	57	51	44	37	30	36	41	50	47	50	54	59	57	60	57
	60	52	48	36	32	36	38	45	51	52	53	54	57	59	61
	59	52	48	37	28	33	36	47	48	52	54	54	57	57	58
	59	54	49	37	31	34	38	47	51	52	53	55	56	55	59
	59	50	45	36	30	32	39	43	52	51	51	52	54	56	54
	57	53	48	34	27	32	39	45	54	53	52	50	53	55	59
	56	51	48	35	26	30	37	46	48	54	53	53	57	56	55
	58	50	47	36	23	28	36	47	48	54	53	54	53	56	57
	52	50	45	34	27	33	33	46	48	52	55	54	53	56	54
	56	50	48	35	29	29	34	48	53	53	54	55	55	59	57
$\begin{aligned} & A \\ & \frac{1}{3} \\ & \vdots \\ & 0 \\ & u \\ & 0 \\ & 3 \end{aligned}$	56	51	45	38	26	32	36	47	56	55	56	53	54	55	55
	55	53	45	36	22	27	32	47	51	53	53	52	52	55	53
	57	50	45	37	24	27	31	42	51	54	52	57	57	59	60
	56	53	48	36	22	26	28	40	52	55	54	58	60	59	62
	56	50	44	33	23	24	27	43	52	54	57	58	58	58	59
	55	52	49	32	25	23	27	43	52	57	57	58	59	60	63
	53	52	47	34	22	22	28	43	53	57	56	59	57	60	63
	52	49	45	35	24	25	30	46	52	55	56	56	57	57	59
	56	52	50	35	22	25	29	42	46	52	54	54	56	56	59
	54	52	46	35	19	21	26	38	49	54	54	57	63	60	60
	53	51	40	33	19	21	21	32	52	53	54	53	51	59	58
	48	48	45	31	20	22	24	35	53	55	56	54	56	58	60
$\begin{aligned} & n \\ & 0 \\ & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 3 \end{aligned}$	52	49	44	36	22	22	26	41	53	54	55	54	55	59	60
	52	46	42	33	21	23	24	46	56	53	53	55	57	60	60
	50	48	46	32	22	22	24	43	52	53	53	53	58	58	60
	52	48	45	30	21	21	26	42	53	55	55	52	58	58	61
	53	50	47	33	22	22	22	41	54	53	55	58	58	58	58
	53	52	45	34	22	23	24	44	52	54	55	57	56	55	58
	55	50	47	32	18	22	27	44	54	55	53	57	55	53	60
	53	50	46	29	21	21	29	45	51	52	52	54	51	57	54
	55	48	46	32	21	22	33	46	52	54	53	53	56	57	61
	56	53	48	30	17	20	36	47	54	56	55	55	56	54	55
	57	51	44	34	24	23	38	49	55	52	53	54	56	53	58
	55	47	48	32	22	23	37	51	55	55	55	59	56	53	55
$\begin{aligned} & 6 \\ & 0 \\ & 3 \\ & \vdots \\ & 0 \\ & \vdots \\ & 0 \\ & 3 \end{aligned}$	54	48	42	34	22	23	40	51	53	53	56	56	54	57	57
	57	52	46	37	25	28	43	50	53	58	58	58	59	56	53
	58	54	50	39	27	31	42	52	55	56	55	57	57	55	55
	54	51	40	35	25	28	41	50	51	56	56	58	60	57	56
	57	51	43	32	24	32	41	49	50	55	55	59	60	56	50
	56	53	45	33	34	33	41	50	56	57	56	57	57	54	54
	57	52	47	40	33	39	44	50	52	56	54	55	58	56	54
	56	54	50	44	41	45	49	56	58	58	58	55	57	56	55
	58	50	51	49	47	49	54	55	55	57	58	57	55	57	55
	56	56	55	50	51	45	46	54	54	59	58	61	58	54	58
	59	53	51	48	48	49	46	51	55	57	57	57	60	56	56
	57	57	52	55	53	53	49	52	55	56	55	57	56	55	55
						$\begin{aligned} & \text { M } \\ & \stackrel{2}{0} \\ & 0 \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$		M $\stackrel{4}{4}$ $\stackrel{+}{+}$ $\stackrel{1}{4}$			$\begin{aligned} & \stackrel{\rightharpoonup}{\mathbf{\omega}} \\ & \stackrel{\omega}{\xi} \end{aligned}$				

Westbound

2.2. MOTSIM Model

The MOTSIM model (See Figure 5 below) is a microsimulation model of the greater Detroit Metro region completed in Quadstone's Paramics software. Model elements, such as geometry, origin-destination patterns, and global settings were reviewed for incorporation into the project corridor model. The network geometry in the I-94 project corridor reflected the existing roadway condition and was extracted to start building the project corridor model. Modifications were made to update the Paramics elements from the MOTSIM model to represent best modeling practices for the corridor.

Figure 5: MOTSIM ModeI

The modification to the MOTSIM network includes:

- I-94 model speed limits updated from 60 to 65 mph to the posted speed limit of 55 mph .
- HERE speed data also confirmed that the typical free flow speed is closer to 55 mph than the 60-65 mph range.
- Link specific headway and reaction factors were removed for the calibration of the study area specific model. Some link-specific headway factors were later applied as required.
- Network coding for interchange terminals with a median was changed from two separate links to one link with two directions and offsets to allow for more accurate signal coding.

Figure 6: Interchanges with Medians, Before (Left) and After (Right)

- The service drive system along I-94 was added to the model network.
- Global headway and reaction times were adjusted to match study area corridor operations.
- Entrance ramp acceleration lanes were measured and recoded as short-length lane additions in lieu of the Paramics ramp function.
- Using the Paramics ramp function, vehicles become unreasonably stalled on entrance ramps. Short-length lane additions simulate more realistic behavior, with mainlines yielding to the ramps as the ramp traffic enters the mainline.

Figure 7: Entrance Ramp Acceleration Lanes, Before (Left) and After (Right)

- Lane utilization rules were established for sections of the corridor that have evidence of heavy left lane utilization. This occurs at mainline sections with poor sight distances and at sections with heavy ramp movements.
- The image in Figure 8 below shows I-94 traffic near the I-75 Interchange at 5:15 PM. Both directions of travel show vehicles congregating in the two left lanes with the right lane used predominately for entering and exiting vehicles.

Figure 8: Avoidance of Right Lanes During Peak Hours, Looking East over Beaubien St

2.3. Volume Development

Traffic volumes were collected from two sources:

1. Time lapse aerial photography to capture mainline, ramp, and intersection turning movement counts during AM and PM peak hours
2. MDOT Classification mainline counts taken over 24 hour periods

The methodology for using both sources of count data with origin-destination matrices provided by the Southeast Michigan Council of Governments (SEMCOG) is shown in Figure 9 below and explained in the following sections: Traffic Counts, Origin-Destination Matrices, and Profiles.

Figure 9: Volume Development Procedure

Traffic Counts

Traffic counts were collected for mainline, ramps, and intersection movements in the l-94 corridor by Skycomp for the AM Peak 7 AM to 9 AM on Wednesday, November 5, 2014, and the PM peak 4 PM to 6 PM on Wednesday, October 8, 2014. The Skycomp counts were balanced for each direction along the mainline, ramp, and intersection for each hour. The counts from Skycomp were supplemented by MDOT 24 hour vehicle classification counts at 4 mainline locations in each direction along l-94: the Brush Street overpass, Dickerson Street overpass, Central Street overpass, and Trumbull Street overpass. Each screenline was counted in both eastbound and westbound directions for 24 -hours, with vehicles classified by passenger car, single unit trucks, and combination trucks. Counts were totaled for each hour in each direction across the corridor, and plotted as a function of time of day. This data was then used to estimate a volume before and after the Skycomp count times. The general formula for estimating the volume for hours before and after the Skycomp count hours is shown below:

$$
\begin{aligned}
& \text { Volume }_{i-1}=\text { Volume }_{i} x \frac{\sum\left({\text { MDOT Mainline Counts })_{i-1}}^{\sum(\text { MDOT Mainline Counts })_{i}}\right.}{\text { (MD }}
\end{aligned}
$$

During the calibration process the estimated volume were further adjusted to better match observed speeds.

Origin-Destination Matrices

The SEMCOG Travel Demand Model was utilized to create a pattern origin-destination (OD) matrix for the study area corridor model. OD matrices were exported for the AM and PM peak periods.

The Existing 2014 Paramics OD matrices for automobiles and trucks were developed through OD estimation using the SEMCOG pattern OD matrices and balanced Skycomp counts. The OD estimation process utilizes Microsoft Excel and Paramics Analyzer files to correlate OD pairs to individual turning movements on ramps, mainlines, and intersections. This estimation methodology relies entirely on the static all-or-nothing traffic assignment (with no perturbation) within the Paramics model. To reproduce realistic field conditions within Paramics, the model utilizes traffic counts collected as targets and varies the pattern OD matrix from SEMCOG. Because the SEMCOG pattern OD is not an observed OD pattern, the pattern is used to initialize values and adjusted to match observed traffic counts.

Profiles

Paramics allows for unique volume distribution within each hour matrix. The Paramics input file that controls the hourly distribution is called profile. The existing l-94 model uses profiles that divide the hour into 15 minute demand sets. To better replicate the influxes of demand within any given hour; profiles were developed for ten sections in the model, as shown below in Figure 10. Each freeway mainline origin (west I-94, east I-94, north I-96, south I-96, north I-75, south I75 , north $\mathrm{M}-10$, and south $\mathrm{M}-10$) were defined as sections. Additionally, cross street origins west of I-75 and east of I-75 were defined as separate sections. The Skycomp data was used to develop the profiles for 2 hours in each peak period, $7-9$ am and $4-6$ pm. Profiles for the 10 sections are shown in Figure 11 below for the AM and in Figure 12 below for the PM. The hours before and after Skycomp counts (6-7am, 9-10am, $2-3 \mathrm{pm}, 3-4 \mathrm{pm}$, and $6-7 \mathrm{pm}$) used a uniform profile. A uniform profile was used because only mainline screenline counts were available, (no ramps), and these screenlines showed predominantly uniform profiles.

Figure 10: Volume Distribution Profile Zones

Figure 11: AM Peak - 15 Minute Volume Profiles

Figure 12: PM Peak - 15 Minute Volume Profiles

2.4. Speed Data

The model speed data was validated against speed data summarized from the Nokia HERE speed database. The HERE data was summarized and averaged over weekdays from October and November of 2014. The HERE data was also summarized for the specific days the traffic counts were taken. It was determined that both sets of data, the two-month average and day-of-count specific, had unique benefits in validation, so both were used in the validation process. The day-of-count specific speed data had the advantage that volumes used in the simulation were directly responsible for the travel time information from that day-of-count date. The concern using the day-of-count travel times exclusively was that it was unknown how many vehicles were used to calculate speed for each time-location bin and could potentially be skewed by a singular outlier vehicle moving at a non-representative speed. This concern is addressed using the two-month average speed data; two months of counts having two months of traffic from which to draw speed calculations. The concern with this data is that the traffic volumes were not simultaneously counted over the same two months; therefore volumes from the date of the count may be high or low compared to the monthly average, yielding a different anticipated speed from the model. In the validation process, speed measurement locations were identified and matched to links from the Paramics model. The model-output link speeds were compared side-by-side to both sets of HERE speed data, and used to provide a multidimensional idea of what speeds should be expected. By in large, the day-of-count speeds and the two-month average speeds followed similar trends, with day-of-count speeds matching or trending slightly slower than the two-month average speeds. The speed profiles for the corridor are summarized in Appendix A. Results comparing modeled speeds to observed speeds are discussed in the Validation Results section.

2.5. Traffic Control

Traffic control in the Paramics model is set up using fixed traffic control timing plans that are designed to closely mimic real life traffic control design. Signal timings were provided by MDOT via Synchro files, and incorporated into the Paramics model. By in large these pre-timed signals performed successfully within Paramics, but a select few timing plans required minor adjustment to process demands successfully. Cycle length and sequence remained constant in this process.

3. Calibration

The purpose of the Paramics calibration procedure is to align modeled volumes and speeds with observed data. When modeled results and observed results are within best practice criteria thresholds, the model is considered validated. Some of the calibration elements have been discussed in earlier sections, such as simulation time, route assignment, demand matrices, and link speeds. Other parameters such as speed memory and time steps were set to Paramics defaults and known best practices. Two global parameters were tested extensively within Paramics: mean target headway and mean driver reaction time. Mean target headway is the average time it takes for the front of a following vehicle to pass the same point as the front of the vehicle preceding it, while the mean reaction time is the time required for a following vehicle to respond to the vehicle preceding to accelerate or decelerate. The value of these factors does not necessarily represent field headway and reaction times, but are rather model inputs to achieve operations that represent field conditions. Through the calibration procedure the headway and driver reaction time were adjusted from 0.5 s to 1.0 s . After multiple iterations, the results indicated that maintaining a headway of 0.75 s and increasing the reaction time from 0.75 s to 0.85 s was most appropriate for achieving model validation. A summary of the global parameters for the MOTSIM model and the I-94 corridor model are listed in Table 1.

Table 1: Paramics Model Parameters

Parameter	MOTSIM Model		I-94 Project Model	
	AM Period	PM Period	AM Period	PM Period
Paramics Version	5.20		6.9.3	
Duration of simulation	4 hours	5 hours	4 hours	5 hours
Simulation Time	$\begin{gathered} \text { 5:00 AM - } \\ \text { 9:00 AM } \end{gathered}$	$\begin{gathered} \text { 2:00 PM - } \\ \text { 7:00 PM } \end{gathered}$	$\begin{aligned} & \text { 6:00 AM - } \\ & \text { 10:00 AM } \end{aligned}$	$\begin{gathered} \text { 2:00 PM - } \\ \text { 7:00 PM } \end{gathered}$
Critical Analysis Hours	N/A		$\begin{gathered} \text { 7:00 AM - } \\ \text { 9:00 AM } \end{gathered}$	$\begin{gathered} \text { 4:00 PM - } \\ \text { 6:00 PM } \end{gathered}$
Number of Time steps per second			5	
Speed Memory			5	
Route Assignment type	All or nothing	perturbation	All or nothing, No perturbation	
Demand Matrix Structure	Matrix $1=$ Matrix $2=$	enger Cars y Vehicles	Matrix 1 = Passenger Cars Matrix 2 = Heavy Vehicles	
Mean Target Headway	0.75	nds	0.75 seconds	
Mean Driver Reaction Time	0.75	onds	0.85 seconds	
Link Speeds	Speed Limi	5-10 mph	Speed Limit	
Curve Speed Factor			1	
Vehicles	Provided with	TSIM Model s)	Expanded (16 types)	

Number of Simulation Runs

The calibration procedure used the average of seven simulation runs to access the impacts of variable and network changes. The metrics summarized in the Validation results is based on 25 runs. The 25 runs correlates to the 25 days of speed data used for the 2-month average target. At some locations, there is significant variation in speeds because of the volatility of congestion based on the shock wave effect of downstream queues. The modeled speed data showed similar trends to the HERE speed data summarized in Appendix B, where bottleneck location had low speed variation between runs and location upstream of bottlenecks had large speed variation between runs. Compiling results using the average of 25 runs provides more confidence in the average model results.

4. Validation Results

The validation results discussed below show how well the model represents field verified volumes and speeds. The methodology for validation of speeds and volume follow the FHWA Traffic Analysis Toolbox Volume III.

The link by link validation data is summarized in Appendix A

Existing Volume Validation

Volume validation is summarized for freeway mainlines and ramps. The volume validation uses the GEH static to compare modeled volumes to observed volumes.

The GEH statistic compares the modeled Paramics volume to the actual balanced observed count volumes for each time period. According to best practices, if the GEH statistic is below 5 for 85% or more of the links, then the modeled volumes are considered an acceptable representation of the observed volumes. The GEH statistic is defined as:

$$
G E H=\sqrt{\frac{2(M-C)^{2}}{M+C}}
$$

Where: $\mathrm{M}=$ Paramics Modeled Volume

C = Balanced Observed Volume

The GEH statistic was used to compare the modeled volume and observed volumes in hour increments for two hour periods in both the AM (7-9 AM) and PM (4-6 PM) peak periods. Below is a summary of the GEH statistics for the mainline links. A full link-by-link comparison of the GEH is in Appendix A. The GEH summary in Table 2 indicates that the existing AM and PM models closely match the balanced 2014 volume sets.

Table 2: The Percent of Freeway links in 2014 Existing Model with GEH < 5.0

AM Model		PM Model	
$7-8$ AM	$8-9$ AM	$4-5$ PM	$5-6$ PM
92%	99%	100%	99%

Existing Speed Validation

Speed validation in this section is summarized for I-94 freeway links. Additional speed validation results on a link-by-link basis for I-94, I-96, I-75, and M-10 are shown in Appendix A.

The best practice for speed validation is to maximize the number of segments that are within 10 mph of the observed speed range.

The modeled speeds were validated against the HERE speed database for the TuesdayThursday average of October and November 2014, and against the speed data on the day of the count (AM peak: November 5, PM peak: October 8). The Paramics model captures the increase and decrease of congestion over the model periods. For each model there are 2 critical hours that are summarized in the tables below. The tables show the percentages of mainlines that is in each speed category and then the summary of how each category validates to the speed category. The percentage of links is based on link length.

The calculations summarized in the tables are determined using the following definitions.
Speed $_{\text {Day }}$ - Observed Speed the day of the count
Speed $_{2 \text { Month }}$ - Observed average speed for Tuesday-Thursday in October and November 2014
Speed $_{\text {Mod }}$ - The Average Modeled speed
Observed Speed $=\frac{\text { Speed }_{\text {Day }}+\text { Speed }_{2 \text { Month }}}{2}$
 and Speed Mod $<$ maximum Speed $_{\text {Day }}$, Speed $\left._{2 \text { Month }}\right)+10$

Slower by 10 mph: if Speed $_{\text {Mod }}<$ minimum $\left(\right.$ Speed $_{\text {Day }}$, Speed $\left._{2 \text { Month }}\right)-10$
Faster by 10 mph: if Speed $_{\text {Mod }}>$ maximum $\left(\right.$ Speed $_{\text {Day }}$, Speed $\left._{2 \text { Month }}\right)+10$

Table 3: Eastbound Speed Validation for AM Peak - EB I-94

	7-8 AM				8-9 AM			
Observed Speed (mph)	\% of total Directional Links	$\begin{gathered} \% \text { within } 10 \\ \text { mph } \end{gathered}$		$\begin{gathered} \% \text { faster } \\ \text { by > } 10 \\ \mathrm{mph} \end{gathered}$	\% of total Directional Links	$\%$ within 10 mph	\% slower by > 10 mph	\% faster by > 10 mph
> 50	59\%	91\%	9\%	0\%	59\%	91\%	9\%	0\%
40-50	24\%	60\%	0\%	40\%	24\%	49\%	0\%	51\%
30-40	7\%	100\%	0\%	0\%	7\%	87\%	13\%	0\%
20-30	10\%	100\%	0\%	0\%	3\%	100\%	0\%	0\%
<20	0\%	0\%	0\%	0\%	7\%	100\%	0\%	0\%
Total		85.35\%	5.01\%	9.64\%		81.67\%	5.91\%	12.42\%

Table 4: Westbound Speed Validation for AM Peak - WB I-94

	7-8 AM				8-9 AM			
Observed Speed (mph)	\% of total Directional Links	$\%$ within 10 mph	\% slower by > 10 mph	$\begin{gathered} \% \\ \left.\begin{array}{c} \% \\ \text { faster } \\ \text { by }>10 \\ \text { mph } \end{array} \right\rvert\, \end{gathered}$	\% of total Directional Links	$\%$ within 10 mph	$\left\|\begin{array}{c} \% \text { slower } \\ \text { by }>10 \\ \mathrm{mph} \end{array}\right\|$	$\%$ faster by > 10 mph
> 50	58\%	87\%	13\%	0\%	50\%	100\%	0\%	0\%
40-50	27\%	100\%	0\%	0\%	27\%	100\%	0\%	0\%
30-40	15\%	100\%	0\%	0\%	15\%	100\%	0\%	0\%
20-30	0\%	0\%	0\%	0\%	8\%	100\%	0\%	0\%
<20	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
Total		92.29\%	7.71\%	0.00\%		100.00\%	0.00\%	0.00\%

Table 5: Eastbound Speed Validation for PM Peak - EB I-94

	4-5 PM				5-6 PM			
Observed Speed (mph)	\% of total Directiona Links	$\%$ within 10 mph	\% slower by > 10 mph	\% faster by > 10 mph	\% of total Directional Links	\% within 10 mph	$\begin{array}{\|c\|} \hline \% \\ \text { slower } \\ \text { by > } \\ 10 \\ \mathrm{mph} \end{array}$	$\begin{gathered} \% \\ \text { \% } \\ \text { faster } \\ \text { by }>10 \\ \mathrm{mph} \end{gathered}$
> 50	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
40-50	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
30-40	34\%	79\%	0\%	21\%	7\%	100\%	0\%	0\%
20-30	31\%	89\%	11\%	0\%	41\%	63\%	0\%	37\%
<20	34\%	88\%	0\%	12\%	52\%	100\%	0\%	0\%
Total		85.18\%	3.50\%	11.33\%		84.53\%	0.00\%	15.47\%

Table 6: Westbound Speed Validation for PM Peak - WB I-94

	4-5 PM				5-6 PM			
Observed Speed (mph)	\% of total Directiona Links	\% within 10 mph	$\begin{gathered} \% \text { slower } \\ \text { by > } 10 \\ \mathrm{mph} \end{gathered}$	\% faster by > 10 mph	\% of total Directiona Links	\% within 10 mph	$\begin{array}{\|c\|} \hline \% \\ \text { slower } \\ \text { by > } \\ 10 \\ \mathrm{mph} \end{array}$	$\%$ faster by > 10 mph
>50	31\%	100\%	0\%	0\%	31\%	100\%	0\%	0\%
40-50	15\%	100\%	0\%	0\%	15\%	100\%	0\%	0\%
30-40	4\%	100\%	0\%	0\%	4\%	0\%	0\%	100\%
20-30	50\%	72\%	0\%	28\%	50\%	98\%	0\%	2\%
<20	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
Total		85.86\%	0.00\%	14.14\%		95.04\%	0.00\%	4.96\%

The tables above show that the modeled speed matches 80% to 100% of the links on I-94 during the critical analysis hours. This indicates that the existing model acceptably replicates real world conditions.

5. Operational Observations

The model validation process discussed in the previous sections shows that the existing models are a fair representation of existing conditions and therefore can be used to assess existing operations.

AM Peak Period Observations

Eastbound I-94

In the morning peak hours, eastbound congestion focuses most heavily at the entrance ramp merges from Northbound and Southbound I-96 to Eastbound I-94. Some ramp backups occur, although the backups remain predominantly upstream along l-94 eastbound ahead of the merges as highlighted by the slow speeds in Figure 13. From the $\mathrm{M}-10$ interchange on westward, congestion opens up with speeds increasing once again, as shown in Figure 14. The Paramics image in Figure 18 below in AM Model Observations highlights the eastbound merge section along I-94 from I-96.

Westbound I-94

Westbound congestion in the morning peak hours is much more distributed than that experienced in the eastbound direction. Congestion remains focused along l-94 upstream of the diverge to l-75, shown in Figure 15 with congestion clearing up after this diverge (Figure 16). The cause of the congestion is from a high frequency of entrance and exit ramps along l-94 upstream of I-75, with congestion following a shockwave pattern up and down this corridor for a majority of the 7am-9am peak hours. See Figure 19 in AM Model Observations below, highlighting the westbound corridor in question.

NO. MDOT - TM 8
May 21, 2015
Figure 13: Eastbound Congestion at I-96 TMC 108N04133-EB I-94 at 14th Street

Figure 14: Congestion Clears at $\mathrm{M}-10$ TMC 108N04130-EB I-94 East of M-10

NO. MDOT - TM 8
May 21, 2015
Figure 15: Westbound I-94 Congestion Upstream of Diverge to I-75
TMC 108N04122 - WB I-94 East of Conner

Figure 16: Westbound I-94 Congestion Clears Downstream of I-75 Interchange TMC 108N04128 - WB I-94 East of I-75

NO. MDOT - TM 8
May 21, 2015
AM Model Observations
Figure 17: AM Congestion Zones

Figure 18: Eastbound Congestion on I-94 from Merging I-96 Traffic

Figure 19: Westbound Congestion Shockwave from I-94/I-75 Diverge Upstream

PM Peak Period Observations

Eastbound

The HERE speed data indicated that there is consistent congestion in the Eastbound direction from I-75 to Conner (Figure 20). This congestion creates queues and impacts operations upstream to l-96 (Figure 21). The speed data and model results show shockwave effect for facilities upstream of I-75, creating varying degrees of congestion between model runs and observed data. This modeled eastbound congestion is captured in Figure 25, Figure 26, and Figure 28.

Westbound I-94

The data and model results show westbound I-94 is congested between Trumbull and I-75. The major bottleneck for this direction occurs at Trumbull (Figure 22) and M-10 entrance ramps with queues extending upstream towards l-75 (Figure 23).

Figure 20: Eastbound I-94 Congestion at I-75 TMC 108N04128 - EB I-94 East of I-75

Figure 21: Eastbound I-94 Congestion near I-96 Impacted from downstream Queues TMC 108N04134-EB I-94 at Linwood

NO. MDOT - TM 8
May 21, 2015
Figure 22: Westbound I-94 Congestion at Trumbull TMC 108N04131 - WB I-94 at Trumbull

Figure 23: Westbound I-94 - Congestion Dissipates East of I-75

PM Model Observations

The images below are screen captures from the PM Existing Paramics Model, which shows congestion levels at different times of the day. This congestion is consistent with the speed profiles shown above.

The figure below shows queues forming in the EB and WB directions around M-10 and I-75. The westbound queues are from Trumbull towards I-75 and the EB is from I-75 through the M10 Interchange.

Figure 24: PM Congestion Zones

Figure 25: PM Existing at 3:30 PM - WB and EB Congestion

Figure 26: PM Existing at 4:30 PM - Congestion in the EB Direction is Extended to I-96

The figure below show Eastbound I-94 traffic east of I-75 traveling near 30 mph , but no queues are forming in this section. Westbound I-94 is at free flow speeds.

Figure 27: PM Existing at 4:30 PM - Eastbound I-94 East of I-75

The figure below shows heavy congestion persisting for the EB and WB I-94 west of I-75.
Figure 28: PM Existing at 5:30 PM

Figure 29: PM Existing at 6:45-l-94 Congestion is Cleared in Both Directions.

AM Period - Existing Validation

AM Period - Existing Validation

													AM78										AM39								
	Link	Facility	Type	$\begin{gathered} \text { Model } \\ \text { Output } \\ \text { Volume } \end{gathered}$	$\left\|\begin{array}{c} \text { simulation } \\ \text { Speed (mph) } \end{array}\right\|$	$\begin{gathered} \text { Ave Hour } \\ \text { Spead, oate } \\ \text { of count } \end{gathered}$	$\begin{aligned} & 2 \text { mad. Avg } \\ & \text { Hour speed } \end{aligned}$	$\begin{array}{\|c\|c} \text { Auto } \\ \text { volume } \\ \text { Lookup } \end{array}$	$\begin{array}{\|c\|c} \begin{array}{c} \text { Truck } \\ \text { volume } \\ \text { Lookup } \end{array} \end{array}$	$\begin{array}{\|c} \text { Total } \\ \text { Volume } \\ \text { Lookup } \end{array}$	$\begin{gathered} \text { Model } \\ \text { Output } \\ \text { Volume } \end{gathered}$	$\begin{gathered} \text { GEH (Target } \\ \text { v. Model) } \end{gathered}$	$\begin{gathered} \text { Density } \\ \text { pcc/mi/ln } \end{gathered}$	cos	$\begin{aligned} & \text { Simulation } \\ & \text { Speed (mph) } \end{aligned}$	$\left.\begin{array}{\|c} \text { Ave Hour } \\ \text { Sved od orte } \\ \text { of count } \end{array} \right\rvert\,$	2mo. Avg Hour Speed	$\begin{array}{\|c\|c} \begin{array}{c} \text { Auto } \\ \text { Volume } \\ \text { Lookup } \end{array} \\ \text { Loo } \end{array}$	$\begin{array}{\|c} \begin{array}{c} \text { Truck } \\ \text { volume } \\ \text { Lookup } \end{array} \\ \hline \end{array}$	$\begin{gathered} \begin{array}{c} \text { Total } \\ \text { Volume } \\ \text { Lookup } \end{array} \\ \hline \end{gathered}$	Model Output Output Volume		$\begin{gathered} \text { Density } \\ \text { pcc/mi/n } \end{gathered}$	cos	$\begin{gathered} \text { Simumation } \\ \text { Speean } \\ \text { (mph) } \end{gathered}$	$\left.\begin{array}{\|c} \text { Av Hour } \\ \text { Sveed orate } \\ \text { of ount } \end{array} \right\rvert\,$	$\begin{aligned} & 2 \mathrm{mog} \text { Avg } \\ & \text { Hour spead } \end{aligned}$	Model Output Volume	$\begin{gathered} \substack{\text { Simulution } \\ \text { speed } \\ \text { smph) }} \end{gathered}$	$\left.\begin{array}{\|c} \text { Avy Hour } \\ \text { speed, Date } \\ \text { of count } \end{array} \right\rvert\,$	
	6237:6233	WB1.94 Eastot Comner	ainine	4586	${ }_{54,03}$			4910	265	5175	5105	0.98	${ }^{37}$	E	47.06			3970	290	4260	${ }_{4146}$	1.76	${ }^{32}$	。	44.63			3864			
		WB1.94 Ext 10 Coner	Mainine	${ }_{4}^{4588}$	54.99			${ }_{4}^{490}$	${ }^{265}$	${ }_{5}^{5175}$	5150	(1.02 $\begin{aligned} & \text { 1.02 } \\ & 0.18\end{aligned}$	${ }_{40}$	E	43.14			${ }_{3970}$	290 47	${ }_{4}^{4260}$	${ }_{4}^{4151}$		${ }_{35}$	E	40.86			${ }_{\substack{3864 \\ \\ \\ 291}}$	${ }_{5} 5.22$		
			${ }_{\text {Mamp }}^{\text {Ramine }}$	${ }_{4}^{224} 4$	52.24	45.82	${ }_{53.17}$	${ }_{4710}^{200}$	$\begin{array}{r}73 \\ 192 \\ \hline\end{array}$	${ }_{4902}^{273}$	${ }_{4819}^{270}$	0.18 1.19			37.19	26.92	36.08	270 3700	${ }_{2}^{473}$	${ }_{394}^{317}$	${ }_{3852}^{311}$	0.34 1.46 1.4			33.49		3,25	${ }_{3575}^{291}$	53.45	37.00	${ }^{51.08}$
	6228:161		Manine	${ }^{4329}$	48.82	${ }_{45.82}$	53.17	4710	192	4902	4797	1.51	53		30.57	${ }_{26,92}^{20.22}$	36.08	3700	243	${ }_{394}$	3878	1.04	${ }_{39}$	E	${ }_{33,80}$	21.33	${ }_{34.25}$	3575	${ }_{54,43}^{53.45}$	37.00	51.08
	6224:161	WB 1.94 Entrane foom NB Conner	Ramp	270				${ }^{300}$	11	${ }^{311}$	${ }^{300}$	0.63						${ }^{250}$	7	${ }^{257}$	259	0.12						230			
	\%6218:6277	WB 1.94 Entrance fiom SB Conner	Ramp	${ }_{4}^{229} 4$				250 5280	${ }_{2}^{10}$	${ }_{5473}^{260}$	258 5322 1	0.12 206						330 4380	${ }_{2}^{85}$	388 4588	389 4566	0.05 0.33 0.0						345 4152 4	5691		
	${ }^{2068: 301}$	WB 1.94 Entrance fom French	${ }_{\text {Ramp }}^{\text {Mainine }}$	${ }_{109}^{4781}$	55,45			($\begin{gathered}5260 \\ 120\end{gathered}$	213 12	5473 132	${ }_{127}^{5322}$	${ }_{0}^{2.06}$	40	E	45.17			4330 120	${ }_{9}^{258}$	${ }_{\text {4588 }}{ }_{129}$	${ }_{4}^{4566}$ 128	0.33 0.09	38	E	41.74			${ }_{4}^{4115} 1$	56.91		
	802:804		Mainine	4857	52.28			5380	225	5605	5431	2.34	45		40.72			4450	267	4777	4717	0.00	43	E	37.83			4272	53.60		
	- ${ }^{811: 812} 8$	WB 1.94 Exit ${ }^{\text {a Gatat }}$	${ }_{\text {Ramp }}^{\text {Ramp }}$	237 555				260 630	28 10	288 640	${ }_{625}^{274}$	0.84 0.60 0.6						310 570	${ }_{17}^{34}$	344 587	343 592 59	0.05 0.21 0.0						311 525			
	- 815.816	WB 1-94 Entrance from Gratiot	Ramp	¢ 555	55.96			630 5750	10 207	${ }_{5}^{640} 5$	625 5698	0.60 3.39	45		42.63			570 4710	${ }_{250}^{17}$	${ }_{4980}^{587}$	${ }_{\substack{592 \\ 5960}}$	0.21 1.41	45	E	38.79			(4293	57.12		
	${ }^{\text {¢ }}$ 837:7838	WB I-94 Exit to Van Dyke	Ramp	78	55.06			80	28	108	104	0.39						90	${ }_{3} 3$	123	124	0.09						116			
	810:828		Mainine	${ }_{5}^{5016}$	${ }_{51.65}^{523}$	${ }^{48.18}$	${ }_{52,33}^{523}$	${ }_{5}^{5670}$	179	${ }_{549} 5$	${ }_{5575}$	${ }^{3.63}$	52		${ }^{36,25}$	${ }^{34.45}$	${ }^{39,33}$	4620	${ }^{217}$	${ }^{4837}$	4956	1.70	${ }_{51}^{51}$		${ }^{33,14}$	32.67	${ }^{37.50}$	4379	${ }_{52,17}^{571}$	${ }_{54.36}$	${ }^{49.58}$
	828:330	WB1.944 Entrance from Van Dayke	${ }_{\text {Mane }}^{\text {Mainine }}$	4004	52.43	48.18	52.33	5670 460	179 28	${ }_{488}^{584}$	5561 458	3.81 1.38 1	54		34.74	34.45	39.33	4620 470	${ }_{28}^{217}$	${ }_{498}^{4837}$	${ }_{473}^{4971}$	1.91 1.13	53		32.08	32.67	37.50	4382 440	53.31	54.36	49.58
	- ${ }^{\text {8453.846 }}$		Mainine	${ }_{5334}$	52.38			6130	${ }_{207}^{207}$	${ }_{6337}$	${ }_{5971}$	${ }_{4.67}$	53		${ }^{38.27}$			5090	245	5335	5995	${ }_{2.17}$	52		35.78			${ }_{4831}^{440}$			
	833:385		ainine	5323	53.12			6130	207	6337	5962	4.78	54	F	37.52			5090	245	5335	5505	2.31	53	F	35.15			4832	55.97		
	851:532	WB.94 Exx t o olliot	Ramp	164				190	10	200	181	1.38						160	19	179	191	0.88						160			
	835:588		Mainine	5120	44.15	55.00	54.17	5940	197	6137	5758	4.91	${ }^{60}$		${ }^{32.64}$	33.60	42.75	4930	${ }^{226}$	5156	5343	2.58	${ }^{60}$		${ }^{30.50}$	${ }^{36.50}$	${ }^{39,33}$	4682	51.05	55.64	48.67
	-858.861		${ }_{\substack{\text { Mainine } \\ \text { Ramp }}}$	5080	44.30	55.00	54.17	${ }_{5}^{5940}$	${ }^{197}$	${ }_{4137} 40$	5739 392	5.16 0.40	50		38.86	39.60	42.75	4930 580	${ }^{226}$	5156 630	5364 613	2.87 0.68 8	50		36.31	36.50	39.33	${ }_{4}^{4694}$	48.69	55.64	48.67
	${ }^{866: 867}$	WB 1.94 Entrance from Elliot	${ }_{\text {Mamp }}^{\text {Ramp }}$	348 5367	55.02			${ }_{6310}$	${ }^{327}$	${ }_{6537}^{40}$	${ }_{6125} 6$	5.408	${ }^{41}$	E	50.55				${ }_{276} 27$			2.68 2.63	42		48.50				5533		
	882:83	WB 1.944 Entrane from Chene	ramp	167				180	13	193	193	0.00						210	18	228	231	0.20						${ }_{210}$			
	874:877			5507	52.39			6490	240	6730	6318	5.10	32	D	50.46			5720	294	6014	6218	2.61	${ }^{33}$	D	20			5499	53.05		
	${ }_{\text {20, }}^{\text {299:290 }}$		$\underbrace{\text { Ramp }}_{\text {Ramp }}$	${ }_{994}^{405}$				490 1220	22 53	¢1273	${ }_{1}^{489}$	1.44 2.10						350 1140	29 70	379 1210	${ }_{1280}^{438}$	2.54 1.98						(352 $\begin{aligned} & 3128 \\ & 1128\end{aligned}$			
	877:880		Manine	4074	47.09	56.00	54.50	4780	165	4945	4632	4.52	${ }^{34}$	D	46.31	51.36	50.08	4230	195	4425	4515	1.35	${ }^{34}$	D	44.71	47.75	48.75	4022	${ }^{47.16}$	55.20	49.67
O	${ }_{\text {880 }}^{\text {880:891 }}$	WB-94 Exit to	${ }_{\text {Mamp }}^{\text {Mainine }}$	${ }_{572}^{4066}$		56.00	54.50	${ }_{7}^{4780}$	165 10	4995 710	4630 664	4.55 1.76				51.36	50.08	4230 700	195	4225 711	4519 748	1.41 1.37				47.75	48.75	${ }_{638}^{4022}$		55.20	49.67
	891:022		Mainine	3485	55.39	55.27	53.00	4080	155	4235	3962	4.26	${ }^{26}$	D	51.12	47.40	47.92	3530	184	3714	3775	1.00	${ }^{26}$	c	50.48	48.73	48.58	3384	54.72	52.70	48.58
∞	${ }^{\text {202:2787 }}$	WB 1.94 Entrance from NB 175	${ }_{\text {Ramp }}^{\text {Mainine }}$	3480	55.28	55.27	53.00	4080	155 37	${ }_{4}^{4235}$	3961 454	4.28 0.14	27	D	49.37	47.40	47.92	3530 390	184 32 1	${ }_{4}^{3714}$	3776 419	1.01 0.15 0.15	26	ס	48.79	48.73	48.58	¢384	55.17	52.70	48.58
	$\frac{278: 279}{}$	WB1-94 Entrance fom S	${ }_{\text {Ramp }}^{\text {Ramp }}$	${ }_{813} 88$				420 900	37 75	${ }_{9}^{457}$	${ }_{881}^{454}$	0.14 3.09						390 760	${ }_{72}^{32}$	${ }_{832}^{422}$	788	0.15 1.55						${ }_{775} 787$			
	${ }^{1888: 189}$		Mainine	4675	54.01	55.27	53.00	5400	267	5667	5293	5.05	29	D	47.10	47.40	47.92	4680	288	4968	4985	${ }_{0}{ }^{1.24}$	27	ס	46.76	48.73	48.58	4547	54.11	52.70	48.58
	189:905		Mainine	4663	52.22	55.27	53.00	5400	267	5667	5287	5.13	40	E	45.69	47.40	47.92	4680	288	4968	4992	0.34	37	£	46.08	48.73	48.58	4547	${ }_{53,31}$	52.70	48.58
	905:908		Mainine	4642	51.10	55.27	53.00	5400	${ }^{267}$	5667	5273	5.33	42	E	42.37	47.40	47.92	4680	${ }^{288}$	4968	5012	${ }^{0.62}$	39	E	43.88	48.73	48.58	4546	52.91	52.70	48.58
	928:929	WB 1.94 Entrance from John R	mp	252				270	20	290	${ }_{253}^{283}$	0.41							${ }^{20}$	290	290	0.00						${ }_{4798}^{257}$			
	911:26 $26: 93$		Mainine	${ }_{4}^{4880}{ }_{487}^{482}$	${ }_{\substack{46.43 \\ 58.26}}$	${ }_{60.67}^{60.67}$	57.00 57.00	5670 5670	${ }_{287}^{287}$	${ }_{5957}^{5957}$	5534	${ }_{5.58}^{5.58}$	${ }_{33}^{44}$	${ }_{\text {E }}$	${ }_{\text {42, }}^{\text {42,72 }}$	$\underset{58.55}{58.55}$	${ }_{5}^{54.25} 5$	4950 4950		5258 5258	5332 5331	年.022	${ }_{32}^{42}$	${ }_{\text {E }}^{\text {E }}$	${ }_{\substack{43.78 \\ 57.55}}$	57.00 57.00	${ }_{53,33}^{53.33}$	4798 4798 98	${ }_{5}^{48.38}$	54.91 54.91	${ }_{53,92}^{53.92}$
	920.921	WB 1.94 Exit o NB Hwy 10	Ramp	842 4011				1070	18	1088	1004 4530	${ }^{2.65}$						910	${ }^{20}$	930	${ }_{1317}^{1017}$	2.79						851 3948			
		WB. 194 Exit to SB Hwy 10	${ }_{\text {Ramp }}^{\text {Mainine }}$	${ }_{701}^{4011}$	51.78	60.67	7.00	4600 870	269 28 1	${ }_{898}^{489}$	4530 836	4.95 2.11	30	D	51.93	58.55	54.2	4040 840	288 28 28	4328 868	${ }_{\text {4315 }}{ }_{912}$	0.20 1.47	29	D	52.02	57.00	55.33	3948 796	51.44	54.91	53.92
	${ }^{\text {932.933 }}$	WB-94 Ext	Mainine	${ }_{3298}$	55.81			${ }^{8730}$	${ }_{241}^{281}$		${ }_{3695}^{865}$	${ }_{4.46}^{2.14}$			55.79			3200	${ }_{260}^{28}$		${ }_{3402}^{94}$	+			56.65	57.00	53.33	${ }_{3151}$	55.66	54.91	
	923:924		ainine	3287	51.65	60.67	57.00	3730	241	3971	3694	4.47	25	c	${ }_{50.75}^{55}$	${ }_{58.55}$	54,25	3200	260	3460	3406	0.92	22	c	${ }_{52.78}^{50,5}$	57.00	${ }_{53,33}$	3151	${ }_{53,01}^{55,0}$	54.91	${ }_{53,92}$
	924:185		Mainine	3274	50.75	60.67	57.00	3730	241	${ }^{3971}$	3694	4.47	26	c	49.58	58.55	54.25	3200	260	3460	3410	0.85	23	c	52.29	57.00	53.33	3150	54.39	54.91	153.92
	- ${ }^{\text {944,942 }}$	WB 1.94 Entance from SB HWY 10	$\underbrace{}_{\substack{\text { Ramp } \\ \text { Ramp }}}$	567 313				630 350	35 10	665 360	659 361	O.23 0.05						($\begin{gathered}430 \\ 310\end{gathered}$	${ }_{11}^{41}$	${ }_{321}^{471}$	474 324	0.14 0.17						${ }_{293}^{450}$			
	954,3607		Mainine	4142	51.38	64.50	59.92	4710	286	4996	4713	4.06	${ }^{24}$	c	51.06	63.90	57.67	3390	${ }^{312}$	4252	4212	0.61	${ }^{21}$	c	52.51	59.09	56.75	3892	53.50	57.67	55.75
	-3607:955	WB 1.94 Entance from Trumbull	$\xrightarrow{\text { Mamine }}$	${ }_{213}^{4141}$	52.90	64.50	59.92	${ }_{2710}$	286 10	${ }_{240}^{4996}$	${ }_{233}^{4713}$	4.06 0.46	23	c	52.96	63.90	57.67	3940 290	${ }_{9}^{312}$	${ }_{\text {4252 }}{ }_{2}$	${ }_{301}^{4213}$	0.60 0.12			54.19	59.09	56.75	3892 265	54.84	57.67	55.75
	961:964	W-94mancerom		4310	56.83	63.44	59.58	4940	296	5236	4939	4.16	30	D	55.89	68.00	56.83	4230	321	4551	4528	0.34	28	D	56.28	58.89	55.58	4155	57.22	57.20	56.50
	-967:968	WB1.94 Exit to Linwood	Ramp	${ }_{4}^{151}$				180 4760	$\begin{array}{r}11 \\ \\ 285 \\ \hline\end{array}$	${ }_{5}^{191}$	180 4758 4	0.81 4.10						160 4070	${ }_{310}^{11}$	${ }_{431}^{488}$	${ }_{4}^{169}$	0.15 0.23						$\begin{array}{r}154 \\ 3998 \\ \hline 398\end{array}$			
	${ }^{\text {964,974 }}$		Main ${ }_{\text {Manine }}^{\text {Mine }}$	${ }_{4127}^{4146}$	${ }_{50.150}^{50.16}$	¢ ${ }_{6288}^{62.88}$	${ }_{60.83}^{60.83}$	47700 4760	${ }_{225}^{285}$	${ }_{\substack{5045 \\ 5045}}$	${ }_{4}^{4758}$	4.10 4.16	${ }_{33}^{34}$	${ }_{0}$	47.89 49.34	${ }_{69.00}^{69.00}$	${ }_{59.17}^{59.17}$	${ }_{4070}^{4070}$	${ }_{310}^{310}$	${ }_{4388}^{4380}$	${ }_{4}^{4365}$	0.23 0.12	${ }_{31}^{31}$	${ }_{0}$	${ }_{48,80}^{48.87}$	${ }_{61.50}^{61.50}$	${ }_{56.92}^{56.92}$	${ }_{\substack{3998 \\ 399}}$	50.34 50.39	${ }_{60.57}^{60.57}$	(58.42 58.42
	1001:1002	WB1.94 Exit os si 196	Ramp	74				80	${ }^{18}$	${ }^{98}$	${ }^{96}$	0.20						80	${ }^{13}$	${ }^{93}$	95	0.21						85			
	1001:1004	WB 1.94 Exit to 1.196	Ramp	939				1170	58	1228	1142	2.50						1090	${ }_{5}$	1143	1199	1.64						1039			
	994,995		Mainine	3090	57.61	${ }^{63.50}$	60.75	3510	209	${ }_{6719}$	${ }^{3515}$	3.39 0.3	21	c	57.90	66.17	58.42	2900	24	${ }^{3144}$	${ }_{61}^{3083}$	${ }^{1.09}$	18	c	58.07	56.00	57.17	${ }_{2}^{2875}$	57.51	58.33	57.58
	999.988 $162: 1011$	1-94	${ }_{\text {Ramp }}^{\text {Ramp }}$	${ }_{\substack{48 \\ 3128}}$	57.58	63.50	60.75	50 350	10 219	60 379	${ }_{3513}^{61}$	0.13 3.40	21	c	57.80	66.17	58.42	50 2950	$\stackrel{9}{253}$	${ }_{3293}^{59}$	-61 314	0.26 0.96	19	c	58.17	56.00	57.17	- ${ }_{263}^{563}$	57.62	58.33	57.58
	990:991	WE1.94 Entrance from S 1.96	Ramp	142				150			161										174	0.30						163			
		W8 1.94 Entrace from NB 1.96	Ramp	¢ $\begin{aligned} & 526 \\ & 3784\end{aligned}$	56.16				79 308	¢ 4 4588	¢09	0.61 3.34	20		55.97			460 3560	- 101	561 3934	568 3895	0.29 0.62	18		56.26			${ }_{3093}^{509}$	56.07		

AM Period - Existing Validation

AM Period - Existing Validation

PM Period - Existing Validation

PM Period－Existing Validation

				${ }^{\text {PMI415 }}$								${ }^{\text {PMM1617 }}$										M1718										${ }^{\text {PM1819 }}$			
	Lunk	${ }_{\text {Facilly }}$	тpe	$\begin{aligned} & \text { Model } \\ & \text { votur } \end{aligned}$	$\left.\begin{array}{c} \text { Simination } \\ \text { spead } \\ \text { (noent } \end{array}\right)$	$\begin{gathered} \text { Avg Hour } \\ \text { Speed, Date } \\ \text { of Count } \end{gathered}$	${ }^{2} 2$ ana ave	Model Output Volume	$\left.\begin{array}{c} \text { Simumaion } \\ \text { Soeen } \\ \text { (mont } \end{array}\right)$	$\begin{aligned} & \text { Avg Hour } \\ & \text { Speed, Date } \\ & \text { of Count } \end{aligned}$	${ }_{\text {2mi．ave }}^{\text {Hourseed }}$	$\begin{gathered} \text { Auto } \\ \text { Aoume } \\ \text { Loomexp } \end{gathered}$	$\begin{gathered} \text { Truck } \\ \text { volume } \\ \text { Lookup } \end{gathered}$	$\begin{aligned} & \text { Total } \\ & \text { Volume } \\ & \text { Lookup } \end{aligned}$	$\begin{aligned} & \text { Model } \\ & \text { Nutut } \\ & \text { voloum } \end{aligned}$		${ }_{\text {Density }}^{\text {pefmiln }}$	${ }^{\text {cos }}$	$\left.\begin{array}{c} \text { simimation } \\ \text { soean } \\ \text { (noent } \end{array}\right)$	$\begin{gathered} \text { Avector } \\ \text { Seper } \\ \text { of coute } \end{gathered}$	${ }_{\text {2mo．AvE }}^{\text {Hoursead }}$	$\begin{aligned} & \text { Auto } \\ & \text { Volume } \\ & \text { Lookup } \end{aligned}$	$\begin{array}{\|c} \substack{\text { Tyuck } \\ \text { coume } \\ \text { coovep }} \end{array}$	$\left\|\begin{array}{c} \text { Totat } \\ \text { volume } \\ \text { cookepe } \end{array}\right\|$	$\begin{aligned} & \text { Motote } \\ & \text { votoutu } \end{aligned}$	$\begin{gathered} \text { GEH (Target } \\ \text { v. Model) } \end{gathered}$	${ }_{\substack{\text { Dessity } \\ \text { pcli／l／}}}$	os	Simulation Speed（mph）	$\begin{aligned} & \text { Avg Hour } \\ & \text { Speed, Date } \\ & \text { of Count } \end{aligned}$		$\begin{gathered} \text { Motele } \\ \text { votututu } \end{gathered}$	$\left.\begin{array}{c} \text { Simimation } \\ \text { spean } \\ \text { (mont } \end{array}\right)$	$\begin{array}{\|c} \text { Avg Hour } \\ \text { Sveed, Date } \\ \text { of Count } \end{array}$	
	${ }^{6237.632}$	4 Easto 0 Comer	minine	${ }^{3209}$	550			${ }^{3407}$	${ }_{5555}$			${ }^{3140}$	${ }_{239}^{239}$	${ }^{3379}$	${ }_{\substack{3533 \\ 3 \\ \hline 59}}$	${ }_{2}^{296}$	${ }_{22}^{22}$		5538			${ }^{3440}$	181	${ }^{3621}$	${ }_{\text {cki }}^{3834}$	3.99	${ }_{24}^{24}$					${ }_{\substack{2050}}^{205}$			
		WB 1．94Extit Comner	Ramp	${ }_{\substack{3304 \\ 307}}$	55．40			${ }_{\substack{307 \\ 326}}$	${ }_{55.25}$			${ }_{\substack{3140 \\ 320}}$	${ }_{\substack{239 \\ 14}}^{1}$	${ }_{334}^{337}$	${ }_{\substack{353 \\ 330}}$	${ }_{\substack{2.96 \\ 0.22}}$	22		${ }_{5528}$			${ }_{4}^{340}$	${ }_{131}^{181}$	${ }_{4531}^{3621}$	¢	${ }_{\substack{3.47 \\ 0.24}}$	${ }_{24}$		54.45			$\underbrace{\text { 20，}}_{\substack{2507 \\ 307}}$	522		
	6230．6228		Mainine	${ }^{2890}$	5351	57.55	\＄6，42	${ }^{3078}$	${ }_{53}^{5386}$	60.30	57，25	${ }_{2}^{2820}$	${ }_{225}^{225}$	${ }^{3045}$	${ }_{3222}^{3227}$	3.6 3.07 0	${ }_{20}^{21}$		${ }_{\substack{381 \\ 513}}$	${ }_{59}^{593}$	8800	300 300 3	${ }_{1}^{168}$	cilice	（		${ }_{21}^{22}$		（ 5 S．83，	（ence	${ }_{\substack{\text { f6．25 } \\ 56.65}}$		5472	55788	¢ 5
	6228：166	NBC	Mainine	${ }_{4}^{289}$	55.48	57.55	55642	¢ ${ }_{\text {3081 }}^{458}$	${ }_{5527}$	60.30	57.25	${ }_{480}^{2820}$	${ }_{7}^{225}$	${ }_{345}^{3045}$	${ }_{365}^{3217}$	${ }_{\substack{3.07 \\ 0.09}}$	20		55.13	5933	58.00			${ }_{3168}$	${ }^{3388}$	${ }^{3.84}$	${ }^{21}$				${ }_{56} 6.25$	${ }_{2}^{206}$	${ }_{5676}$	55.78	56.00
	${ }^{621}$	WE 1.94 Entanace tome SB Comer	Ramp	${ }_{137}^{139}$				${ }_{143} 14$				130	10	${ }_{140}$	${ }_{137}^{465}$	${ }_{0}^{0.09}$						${ }_{150}$	${ }_{3}^{2}$	${ }_{153}^{45}$	${ }_{153}^{431}$	－						cos280 105			
				${ }^{3223}$	5784			3675	57.70			3410	${ }^{242}$	${ }^{3652}$	${ }_{315}^{3815}$	${ }_{2}^{2.67}$	23	c	${ }^{57.33}$			3570 380	173	3743 185	${ }^{379}$	${ }_{\substack{\text { c．} \\ \text { 300 } \\ 0.51}}$	24	c	57.38			${ }_{201}^{2601}$	59.03		
		WE1．94 Entranat fom French	Ramp	${ }_{3689}^{221}$	54.94			392 395	54.76			3710	252	3362	${ }_{4122}^{310}$	－	26	－	54.43			${ }^{3750}$	178	${ }_{3928}$	${ }_{4177}$	${ }_{3} .91$	26	－	54.77			${ }_{2731}^{124}$	56.82		
			Ramp	$\substack{164 \\ 416}^{19}$				${ }_{4}^{184}$				${ }_{420}^{170}$	10 20	180 440	${ }_{4}^{182}$	${ }_{0} 2.24$						lio 360	10		$\underset{\substack{183 \\ 368}}{ }$	0.26						${ }_{247}^{126}$			
	808．810	Wenemer	Manine	${ }^{3893}$	57.10			4225	56.96			3360	268	4222	${ }^{4371}$	2.27	${ }^{26}$	－	57.12			3900	${ }_{171}^{17}$	${ }_{4}^{4181} 1$	cisict	（e．38	26	－	56,97			cick	58.16		
	${ }^{810,828}$	，	Mantine	3709	52.41	57.09		4045	52.22	6200	${ }^{53.67}$	3800	24	4044	4187	223	${ }^{27}$		5234	58.27	54.92	3770	161	${ }^{3931}$	4187	4.02	${ }^{27}$		5209	59.50	3.92	2751	${ }_{53,42}$		${ }_{56,58}^{58}$
	－ 8288830		Mainine	${ }_{3}^{3701}$	54.34	57.09	${ }_{54,42}$	${ }^{4044}$	5409	6200	5367	3800	${ }_{26}^{244}$	${ }_{4044}$	${ }^{4188}$	$\underset{\substack{2,24 \\ 1.64}}{ }$	${ }^{27}$	－	54.12	58.27	5492	${ }_{370}^{370}$	161	${ }^{3931}$		4.00	27	。	${ }_{53,64}$	59.50	53.92	2755	55.66	62,33	56.58
	${ }^{8458.866}$	we 1.94 Entrance foom van Oavke		¢ 233				$\substack{302 \\ 4350}_{\text {430 }}$				${ }_{4} 300$	${ }_{270}^{26}$	${ }_{3370}^{336}$	${ }_{4881}^{298}$	${ }_{\substack{1.64 \\ 1.67}}^{\substack{22 \\ \\ \hline}}$						${ }_{4060}^{200}$	164	${ }_{4224}^{293}$	${ }_{4}^{2877}$	－						${ }^{195}$			
	${ }^{833835}$		－Manine	$\substack{3337 \\ 212}^{\text {che }}$	56.78			${ }_{\substack{4350 \\ 238}}$	56.59			${ }_{\substack{4100 \\ 220}}$	${ }_{11}^{270}$	${ }_{231}^{4370}$	${ }^{4} 478$	（1．62	27	－	5644			4060 180	164 10	${ }_{1224}^{429}$	${ }^{4988}$		28	－	54.81			${ }_{129}^{295}$	58.11		
	835．858			${ }^{3703}$	5270	56.73	${ }^{10108}$	4117	52.58	57.91	52.17	3880	259	4139	4245	1.64	${ }^{28}$	ס	202	58.67	54.50	3880	154	4034	4291	${ }^{3.98}$	29	ס		58.25	${ }_{5}^{53,83}$	2838	54.00	5890	${ }_{5}^{5658}$
	858：	Entane fome Ellot		cisk367 330	5108	56.73	\＄108	$\substack{4117 \\ 343}_{4 .}$	50.31	5791	5217	3880	${ }_{17}^{259}$	${ }_{347}^{4139}$	4237 340	（151	${ }^{30}$	。	48.60	58.67	5450		${ }_{154}^{4}$	${ }_{254}^{4034}$	－4302 252	4.15 0.15	${ }^{31}$	－	47.19	58.25	${ }^{53,83}$	${ }_{\substack{2847 \\ 165}}^{12}$	54.85	5880	56.58
	${ }^{\text {873：874 }}$		－Manine	${ }_{3}^{3368}$	${ }_{58,13}$			${ }^{4455}$	58.13			4210	276	4486	4575		28	O	55.20			4130	158	4288	4558	4.06	28	－	54.90			${ }_{3}^{1027}$	58.75		
	${ }^{\text {828883 }}$	WE．194 Entrane foom Chene	${ }_{\text {－}}^{\text {Rampinine }}$	$\substack{361 \\ 4306}_{3}$	56.35			${ }_{\substack{3781 \\ 4831}}$	56.23			${ }_{3}^{3750}$	${ }_{286}^{10}$	${ }_{4866}^{380}$	${ }_{\substack{380 \\ 4997}}$	（000	${ }^{23}$	c	54.68			${ }_{1}^{190} 4380$	${ }_{163}$	${ }_{4483}^{195}$	${ }_{4}^{1988} 4$	4.15	${ }^{23}$		51.91			$\substack{135 \\ 3168}$	58.44		
			Ramp	${ }_{721}^{771}$				${ }_{889}^{841}$				${ }_{8}^{820}$	${ }_{77}^{29}$	${ }^{849} 8$	${ }_{818}^{829}$	${ }_{0}^{0.69}$						${ }_{7}^{660}$	${ }_{40}^{19}$	${ }_{70}^{679}$	${ }_{775}^{7215}$	0.18						$\underbrace{\substack{136}}_{\substack{466 \\ 547}}$			
	${ }^{8778880}$		Maine		（ ${ }_{\substack{5388 \\ 5584}}$	${ }_{\substack{5283 \\ 5283}}^{\substack{\text { che }}}$	${ }_{\substack{4825 \\ 485}}$		${ }_{\substack{5398 \\ 5615}}^{\substack{\text { che }}}$	¢133	${ }_{4}^{4700}$	3010 3010	180 180 18	${ }_{3}^{3190}$	年3298	179 1,172	${ }_{22}^{22}$		${ }_{\substack{50.36 \\ 5078}}$	${ }_{4}^{40.58}$	${ }_{4}^{41.50}$	${ }_{2930}^{2930}$	$\xrightarrow{104} 1$	隹 3034	永389	${ }_{\substack{4.54 \\ 4.57}}$	${ }_{27}^{25}$		${ }_{4181}^{4966}$	${ }_{4}^{40.13} 4$	${ }_{4492}^{4492}$	${ }_{\substack{2164 \\ 2169}}^{\substack{169}}$	S5．53，	¢130	${ }_{\substack{5150 \\ 5150}}^{\text {cis }}$
	${ }^{\text {880：897 }}$	WE1．94 Extt of eaubien	－Mamp	$\substack{2812 \\ 361}_{220}$				${ }_{411}^{3150}$				${ }_{3}^{3010} 4$	${ }_{10}^{180}$	${ }_{42190}^{420}$	（ 3288	cine						${ }^{2930}$	${ }_{104}^{10}$	${ }_{\substack{3034 \\ 390}}$	${ }_{3}^{3294}$	${ }_{0}^{4.25}$						${ }_{272}^{2169}$			
				${ }_{2}^{2444}$	S6．${ }_{\substack{5682 \\ 568}}$	${ }_{4892}^{4892}$	${ }_{4}^{4.550} 4$	${ }_{\substack{2738 \\ 273 \\ \hline \\ \hline}}$		${ }_{\substack{49.11 \\ 49.11}}$	（38,42 38.92	${ }_{2000}^{2800}$		${ }_{270}^{270}$		${ }_{203}^{2.11}$	${ }_{22}^{21}$		${ }_{44,45}^{4.72}$	20.83	28.25	${ }^{25550}$	${ }_{94}^{94}$	${ }_{\substack{2644 \\ 2644}}^{2}$	${ }_{2}^{2902}$	4.90 4.96	${ }^{33}$	○	33.27	2182		（1006	（ ${ }_{\substack{54,35 \\ 5405}}$	4270 4270	${ }_{4}^{4425}$
			$\square_{\text {ciamp }}^{\text {Rainine }}$	$\substack{2481 \\ 288}_{241}$				${ }_{311}^{273}$																											
	${ }_{278279}^{278}$	WB 1.94 Entrane trom 5 SB －75	Sme	5				5				520	${ }_{20}^{40}$	${ }^{560}$	${ }_{546}$	0．60						${ }_{6}^{620}$	${ }_{4}^{46}$	666	${ }_{5}^{547}$	4.83						590			
			Manine	（inct	${ }_{56,58}^{5658}$	${ }_{4}^{48.92} 4$	${ }_{44.50}^{44.50}$	（3501	（ ${ }_{\substack{5252 \\ 5088}}$	${ }_{4}^{49.11}$	（38．42	3420	${ }_{218}^{218}$	${ }_{\substack{3638 \\ 3638}}^{5}$	年3739	${ }_{\substack{1.66 \\ 1.52}}^{\text {den }}$	${ }^{33}$	¢	${ }_{\substack{41325 \\ 3025}}$	20.83	28，	（	${ }_{146}^{146}$	（ 3686		${ }_{\substack{263 \\ 274}}^{263}$	${ }_{5} 4$		${ }^{23,59}$			${ }_{\substack{2731 \\ 279}}^{279}$	${ }_{\substack{5289 \\ 5288}}^{5}$	${ }_{4}^{42770}$	${ }_{4}^{4.25}$
			Minine	¢	55.16	48.92	44.50	3933	47.13	49.11	38，42	cois ${ }^{3420}$	${ }_{3}^{218}$	${ }_{\substack{3638 \\ 538}}$	${ }_{\substack{3707 \\ 540}}$	（1．48	${ }_{38}$	E	${ }^{33.55}$	20.83	2825		${ }_{37}^{146}$	（3926	隹3811 590	3.38 0.29 0	${ }_{64}$		20.24	${ }_{21,82}$	28.83	cize	49.74	42.70	44.25
	－		－	3729 372	47.97	${ }^{5242}$	${ }^{48.17}$	${ }_{4} 5109$	39，72	${ }^{41.18}$	33.92	3920	${ }^{251}$	4171	4215	${ }_{0}^{0.68}$	${ }^{46}$		1.79	33.60		4040	183	4223	4426	3.09 0.	${ }^{54}$					${ }_{3183}$	48.76	${ }^{34.60}$	37．00
	${ }_{\text {2 }}^{26,993}$	WB． 194 Ext 10 NB Hwy 10	－$_{\text {Rampe }}^{\text {maine }}$	（3726	57.05	5242	48.17	${ }_{851}^{4109}$	45.71	41.18	33.92	${ }_{\substack{3320 \\ 840}}$	${ }_{28}^{251}$	${ }_{868}^{477}$	${ }_{889}^{4213}$	0.65 i．34 i，	${ }^{41}$		35.38	33.60	24.5	${ }_{790}^{4040}$	183 15	${ }_{805}^{4223}$	4298 836	3.12 1.08	${ }^{47}$		${ }^{32} 38$	1960	22.00	边3185	5619	33.60	33.00
	${ }^{\text {901330 }}$			${ }_{293}$	46.29	52.42	48.17	${ }_{3258}$	34.11	41.18	33.92	3080	223	${ }_{303}$	${ }_{338} 832$	${ }_{1}^{1.37}$	49		2392	33.60	2458	${ }_{3250}$	168	${ }_{3418}$	${ }_{359} 3$	${ }_{2}^{109}$	56		21.85	19.60	2200	2514	45.79	33.60	37.00
	9322933	WB．194 Exit os 5 H Huy 10	amp	${ }^{463}$				${ }_{5}^{520}$				480	42	522	510	${ }_{0}^{0.53}$						540	${ }^{32}$	572	571							${ }_{4}^{413}$			
	${ }^{\text {923：32 }}$		－Manine	${ }_{2}^{2085}$	${ }_{31.136}^{40.12}$	${ }_{\substack{2242 \\ 5242}}^{\substack{\text { 2，}}}$	${ }_{48.17}^{48.17}$	${ }_{2}^{2724} 2$	${ }_{2009}^{2008}$	${ }_{4118}^{41.18}$	${ }_{33,92}^{33,92}$	${ }_{200}^{2600}$	181	${ }_{2781}^{271}$	${ }_{2}^{2888}$	1．45 1.30 1	${ }_{67}^{62}$			${ }_{\substack{33,60 \\ 3360}}^{\substack{\text { a }}}$	${ }^{24588}$	2710 2710 20	${ }_{\substack{136 \\ 136}}$	${ }_{286}^{2846}$	（3039		${ }_{68}^{70}$					${ }_{221}^{2217}$	${ }_{4}^{45.45} 4$	${ }_{\substack{3.460 \\ 34.60}}^{\substack{\text { a }}}$	
	${ }^{\text {924，185 }}$	B 1.24 Entance foom 58 Hw 10	Ramp	$\substack{2691 \\ 899}_{\substack{298}}$		5242	48.17	2719 914		41.18	33.92	2800 880	${ }_{181}^{181}$	${ }_{9051}^{2781}$	－ 2386	（123				33.60	24.58	${ }_{\substack{2710 \\ 810}}^{2}$	${ }_{42}^{136}$	${ }_{\substack{284 \\ 852}}$	${ }_{\substack{3062 \\ 864}}$	3.97 0.91	63				2200	${ }_{\substack{229 \\ 59}}^{\text {229 }}$	1235	33.60	
	${ }^{\text {9477948 }}$	WB1．94 Entrance fom NB W W 10	Ramp	${ }_{790}$				${ }_{832} 818$				${ }_{840}$	${ }_{10} 10$	${ }_{850} 8$	${ }_{817}^{917}$	0.123 O．14 0						860	${ }_{6}^{42}$		¢864 684 454	（en						${ }_{551}^{591}$			
			－Manine	${ }_{4}^{4002}$	25.62	${ }_{\text {cta }}^{53,30}$	${ }_{48,75}^{48,5}$	${ }_{4457}^{4457}$	${ }_{\substack{20.70 \\ 1929}}$	${ }_{3213}^{3213}$	29.50	4330 4300	${ }_{236}^{236}$	${ }_{4}^{4536}$	${ }_{\substack{4575 \\ 4575}}^{4}$	－0.59 0.58	${ }_{64}^{60}$			33.30 33.30	${ }^{2233}$	${ }_{4180}^{4180}$	（184	${ }_{4}^{4364} 4$	${ }_{4}^{4554}$	${ }_{\substack{285 \\ 288}}$	${ }_{60}^{55}$		${ }^{20.38}$	27.13	2108	越3033	${ }_{4522}^{44.97}$	2967	3.42 34.42
	957．958	WB． 19.9 Entrance tom Tum	Ramp	920	4800	4936	4800	${ }_{\substack{\text { ass } \\ 5056}}$	46.55	3975	3667	${ }_{\substack{1010 \\ 5310}}$	${ }^{10}$	${ }_{\substack{1020 \\ 5558}}$	${ }_{\substack{962 \\ 5540}}^{\text {9，}}$	${ }_{\text {cose }}^{1.88}$			4745		${ }^{34,58}$	8000	${ }_{10}^{10}$		${ }_{\text {cki }}^{887}$	${ }^{1.155}$			482	2370		${ }_{658}^{658}$			
	${ }^{\text {9677．968 }}$	WE1．194 Exit ol Linvod	－Ramp	${ }_{153}$		49.36	48.00	${ }_{169}$			36.67	${ }_{1} 10$	${ }_{18}^{248}$	${ }^{5558} 1$	（	（e．29						9000	${ }_{11}^{194}$	${ }_{101}$	（145	${ }_{\text {3，97 }}$			66.82			${ }_{1}$	5.64	883	
	964：974		Mainine	${ }_{\substack{4728 \\ 4706}}^{4}$	¢38.39 44.87	${ }_{60.63}^{60.63}$	${ }_{\text {ctio2 }}^{5192}$	$\substack{5237 \\ 5237}_{\text {cher }}$	${ }_{\substack{36.74 \\ 44.18}}^{\text {a }}$	${ }_{\substack{48.50 \\ 485}}$	${ }_{47.67}^{47,67}$	5200	2288	${ }_{\substack{\text { cher } \\ 5428 \\ \hline}}$	${ }_{5373}^{5373}$	${ }_{0}^{0.75} 0$	${ }_{41}$		${ }_{\substack{37.40 \\ 4988}}$	${ }_{\substack{5020 \\ 5020}}^{\substack{\text { coid }}}$	${ }_{4}^{45.75} 4$	${ }_{4}^{4910} 4$	${ }_{183}^{183}$	5093	¢	3.09 3.08	${ }_{41}^{49}$			${ }_{4}^{47.50} 4$	${ }_{45,57}^{45,67}$	（3988	${ }_{48}^{47.51}$	${ }_{48}^{48,75}$	${ }_{46,67}^{46,67}$
	为	WE1．96 Exit of	${ }_{\text {ckind }}^{\text {Ramp }}$	¢				（ ${ }_{\substack{583 \\ 869}}$					128 18 84									cise	21	边 649	664 863 8	0．48						（			
	－1007：004		－Mamp	¢	58.94	58.58	54.17		59.16	5200	51.67	${ }^{8740}$	${ }_{185}^{84}$	${ }_{3865}^{898}$	边	（139	22		59.15	5227	51.08	780 3500	${ }_{93}^{69}$	${ }_{3}^{8593}$	（888		22		59.22	53.63	${ }_{49}^{493}$	${ }_{\substack{594 \\ 297}}^{59}$	55.95	54.38	52.17
	999．988	WB1．99 Entra	－Ramp	$\substack{137 \\ 341}_{13}$	58.91	58.58	54.17		58.93	52.00	51．67	${ }^{130} 3870$	${ }_{10}^{105}$	${ }^{140}$	（1300	－	23		58.66	5227	51．08	${ }_{\substack{150 \\ 3650}}$	${ }_{103}^{10}$	－ 1700	¢ 394	O．24 3，11	${ }_{23}$		59.07	${ }_{53,63}$	${ }^{9.33}$	${ }_{2991}^{109}$	58.29	5， 38	17
	990991	WE 1.94 Etrance from 581.96	Ramp	${ }_{\substack{206 \\ 731}}$				${ }^{226}$				${ }_{210}^{210}$	${ }^{12}$	${ }^{222}$	${ }^{226}$	${ }^{0.27}$						${ }^{270}$	10	${ }^{2358}$	${ }^{281}$							${ }_{191}^{193}$			
		WE． 1.94 Entrace from NB .196	${ }_{\text {cosem }}^{\text {Mamp }}$	（ ${ }_{\substack{731 \\ 432}}$	54.88			$\underset{483}{477}$	54.74			${ }_{\substack{680 \\ 4760}}$	－${ }_{23}^{83}$	763 4990		（i．30	23		59.94			（8800	${ }_{189}^{76}$		（	（2．15	23		55.30			Stil	56.15		

PM Period - Existing Validation

PM Period - Existing Validation

Appendix B: HERE Day to Day Speed Profiles

Eastbound I-94 - AM Peak
Speeds Reported by the HERE Database for Tuesday - Thursday during October and November 2014

State of Michigan

DEPARTMENT OF TRANSPORTATION

January 4, 2006

Mr. Thomas J. Fudaly
Engineering \& Operations Manager
Federal Highway Administration
315 W. Allegan St., Room 211
Lansing, MI 48933
Dear Mr. Fudaly:

FEDEFAL HIGHWAY ADMIN.
JAN OB 2006
MICHIGAN DIVISION
MICHIGAN MIICHIGAN

Request for Approval of Additional Special Route Designations
for Vertical Clearance in Highly Urbanized Areas
The Michigan Department of Transportation (MDOT) is requesting approval of additional routes to be included with the current Special Routes Designation in our Bridge and Road Design Manuals. By approving this plan, these additional routes would now require $14^{\prime}-6^{\prime \prime}$ vertical clearance as compared to the AASHTO required $16^{\prime}-0^{\prime \prime}$. MDOT, as part of the plan, is also designating a system of routes that remain as the $16^{\prime}-0^{\prime \prime}$ network.

We have coordinated with you and your staff over the past several years to arrive at a plan to provide a roadway network that preserves sufficient $16^{\prime}-0^{\prime \prime}$ routes for the national defense system and for the movement of commercial goods. This proposal satisfies both the need for such a system while allowing other routes in the urban areas relief to a more appropriate standard of $14^{\prime}-6^{\prime \prime}$. A significant portion of MDOT's roadway system was built when the vertical clearance standard was $14^{\prime}-0^{\prime \prime}$. In the absence of approval of these special route designations, MDOT would suffer a significantly greater hardship to meet current standards than our counterparts across the country. We estimate approval of the additional routes will save the State of Michigan almost $\$ 270$ million. These funds can be used to address the other significant bridge needs across the state and help improve the overall bridge system condition.

Enclosed for your approval is a listing of the additional structures we are requesting approval to be added to the Special Route Designation. Also enclosed are maps that show the vertical clearance designations for Michigan's urban areas. MDOT has added a field to our corporate database that indicates the required vertical clearance for each structure. Enclosed is a spreadsheet that contains the information for bridges in the urban areas.

Mr. Thomas J. Fudaly
January 4, 2006
Page 2

We have also included an updated version of our "Operating Instructions for Scoping of Road and Bridge Projects to meet the current AASHTO Vertical Clearance Standards". This document was originally created in 1998 as a joint cooperative effort with FHWA. This provides MDOT staff with the process for scoping projects that have substandard vertical clearance and provides them instructions on how to analyze the best/most cost effective method to achieve the required standard. This document was developed with the understanding that the best alternative may include an incremental approach to improve the vertical clearance over a series of projects.

Our proposal has been developed cooperatively with your office. MDOT believes it provides us with a methodology to cost effectively meet your concerns with improving vertical clearance on our roadway system. When approved, we will make appropriate changes to our Bridge and Road Design Manuals as well as include the changes into our Scoping Manual that is currently being updated. Please contact me at $373-0030$ if you have any questions pertaining to this request.

Sincerely,

Enclosures
cc: J. Polasek
T. Frame
S. Beck
S. Mortal
D. Wresinski
A. Irwin

NEWLY EXEMPT BRIDGES (PROPOSED)					
				Underclearance in Ft.	
Structure Number	Control Section	Structure Carry Traffic On	Structure over	Existing	Required
S04					
S05	50011	CLINTON R RD	M-53	14.83	14.5
S09	50023	U TRN W/MOUND RD	M-59	14.17	14.5
S08	63043	M-150	M-59	15.58	14.5
S06	63043	AUBURN RD	M-59	14.57	14.5
S03-1	63043	CROOKS RD	M-59	14.83	14.5
S01-2	63043	SQUIRREL RD NB	M-59	14.47	14.5
S01-1	63043	1-75 SB	M-59	15.42	14.5
S01	63043	1-75 NB	M-59	15.58	14.5
X01	63043	OPDYKE RD	M-59	14.57	14.5
X03-4	63043	GTW RR	M-59	14.57	14.5
X03-3	63041	GTWRR(WEST TRACK)	M-59	14.90	14.5
S02	63041	GTWRR(EAST TRACK)	M-59	14.93	14.5
S46	63031	M-10 NB	US-24	14.50	14.5
$\times 01$	0	1-696 EB	WOODWARD	15.06	14.5
S02-2	63052	GTWRR	US-24	13.75	14.5
S02-1	81081	US-23 SB	US-23 BR	14.40	14.5
P01	81081	US-23 NB	US-23 BR	14.40	14.5
$\times 01$	81072	N UNIV PED WALK	FOREST AVE US23 BR	15.65	$\begin{aligned} & 17 \mathrm{PED} \\ & 23 \mathrm{RR} \end{aligned}$
X01	81101	AA RR	1-94 BL	14.50	14.5
S01	81073	AA RR	US-23 BR	14.57	14.5
S07	81101	1-94	I-94 BL	14.17	14.5
S05	81073	M-14	US-23 BR HURON RIVER DR	14.40	14.5
S04	81105	NEWPORT RD	M-14	15.32	14.5
S03	81105	MILLER RD	M-14	14.67	14.5
S03	81105	DEXTER RD	M-14	15.65	14.5
S04	81063	OLD M-17 EB	US-12 WB	14.67	14.5
S05	81063	WIARD RD NB (UP/L)	US-12	14.07	14.5
S01	81063	FORD EX DR NB(UPL)	US-12	13.85	14.5
$\times 01$	82011	ECORSE RD WB	US-12EB	14.17	14.5
S10-3	82011	CONRAIL	US-12	14.67	14.5
S25	77031	1-94 EB	M-25	14.67	14.5
S03	77091	I-94/l-69 (E \& WB)	PINE GROVE AVE.(M-25)	14.93	14.5
$\times 01$	25072	1-69	M-54 (DORT HWY)	15.06	14.5
X02	25072	GTW RR	M-54	13.98	14.5
X03	25072	CSXRR	M-54	14.01	14.5
X02	61151	MI SHORE	1-96 BS	14.99	14.5
X04	61151	CSXRR	1-96 BS	14.67	14.5
S01	61151	CSXRR	1-96 BS	15.16	14.5
S02	61151	BROADWAY AVE	1-96 BS	14.57	14.5
X01	61151	AIRPORT RD	1-96 BS	15.91	14.5
S03	3032	CSXRR	US-31	14.30	14.5
S03	3051	US-31 SB	US-31 BR (58 TH STREET)	14.99	14.5
S01	3034	1-196 WB	US-31NB	15.58	14.5

NEWLY EXEMPT BRIDGES (PROPOSED)					
				Underclearance in Ft.	
Structure Number	Control Section	Structure Carry Traffic On	Structure over	Existing	Required
S02	70013	US-31	I-196 BL	14.83	14.5
S02	11081	EUCLID AVE	I-94 BL (MAIN STREET)	14.50	14.5
S01-3	11081	EUCLID AVE	1-94 BL (MAIN STREET)	14.50	14.5
S01-4	11031	1-94 EB	US-31 \& M-139	15.91	14.5
S08	11031	1-94 WB	US-31 \& M-139	14.93	14.5
X01	70062	1-96 EB	M-11 WB	14.40	14.5
X02	41063	CONRAIL	M-11	14.01	14.5
S01-4	41063	CSXRR	M-11	12.99	14.5
P01	41063	1-96WB	M-11	14.76	14.5
X01	39052	PEDESTRIAN	M-331 (S WESTNEDGE AVE)	15.81	17
P02	33042	CONRAIL	M-43	14.40	14.5
S14	33042	PED OVER @ CLEMENS	M-43	14.99	14.5
S15	19021	1-69 SB	GRAND RIVER AVE (1-96BL)	14.99	14.5
S04-2	19021	1-69 NB	GRAND RIVER AVE (1-96BL)	14.99	14.5
S12	0	US-127 SB	$1-94 \mathrm{BL}$	14.34	14.5
S12	38083	1-94	1 -94BL SB	14.34	14.5
S07	50011	M-53 SB	VAN DYKE RD \& M-53 RMP	16.25	14.5
S06	50022	M-59 EB	M-53	16.24	14.5
S01	50022	M-59	M-53	16.24	14.5
X01	50023	UTICA RD	M-59	16.24	14.5
S02	50023	CONRAIL	M-59	16.01	14.5
S09	50023	MERRILL RD	M-59	16.24	14.5
S07	50023	U TRN E/MOUND RD	M-59	16.24	14.5
S03	50023	NB MOUND RD	M-59	16.24	14.5
S07	50023	XOVER W/MOUND RD	M-59	16.24	14.5
S03-1	63043	LIVERNOIS RD	M-59	16.50	14.5
S01	63043	SQUIRREL RD SB	M-59	20.41	14.5
S02	81105	WAGNER RD	M-14	16.67	14.5
S01-3	3032	US-31 BR (58 TH)	US-31 NB	16.24	14.5
P01	41063	1-96EB	M-11	16.57	14.5
P03	41062	PED X-OVER@IVANRES	M-11	19.00	17
R01	41062	PED X-OVER M-11	M-11(28TH STREET)	16.99	17
S01	41062	M-11	CSX RR \& M-21BR	20.67	23
S02-3	3032	60 TH STREET	US-31	16.24	14.5
S02-4	23152	1-96 EB	M-43	16.14	14.5
P01	23152	1-96 WB	M-43	16.01	14.5
P02	33042	PED OVER @ FAIRVIE	M-43	16.01	14.5
P01	33043	HARRISON ST	1-69 BR	16.01	14.5
S04-1	33043	PED @HITCH POST RD	1-69 BR	16.01	14.5
		US-127 NB	1 -94BL	16.93	14.5

Previously Exempted Highly Urbanized Routes

				Underclearance in Ft.	
Structure Number	Control Section	Structure Carry Traffic On	Structure over	Existing	Required
S02	13033	M-96 (COLUMBIA)	1-194		14.5
S03	23081	CANAL RD	1-496 RAMP	14.83	14.5
S04	23081	CANAL RD	1-496	15.35	14.5
S05	23081	CREYTS RD NB	1-496	15.16	14.5
S06	23081	SNOW RD	1-496	14.99	14.5
S14	23081	CREYTS ROAD SB	1-496	14.57	14.5
P01	25132	AVON ST WALKOVER	1-475	16.73	17
P02	25132	GEORGE ST. PED. X	1-475	16.73	17
P03	25132	HARVARD ST WALKOVR	1-475	15.65	17
P06	25132	LINDSAY BLVD PEDX	1-475	15.16	17
R02	25132	GTW RR SERV RD	1-475	14.83	$\begin{aligned} & 14.5 \mathrm{Rd} \\ & \text { 23.0 RR } \\ & \hline \end{aligned}$
S02	25132	HILL RD	$1-475$	16.14	14.5
S04	25132	BRISTOL RD(OLDM121	1-475	14.83	14.5
S05	25132	HEMPHILL RD	1-475	15.49	14.5
S09	25132	12 TH ST RELOC	1-475	15.32	14.5
S10	25132	$1-69 \mathrm{~EB}$	1-475 \& 1-475 RAMPS	15.75	14.5
S10	25132	1-69 WB	1-475 \& 1-475 RAMPS	15.75	14.5
S15	25132	FIFTHST.	$1-475$ \& RAMPS C\&D	15.22	14.5
S16	25132	COURT ST - WB	1-475	14.50	14.5
S17	25132	THIRD ST	1-475	14.99	14.5
S18	25132	SECOND ST	1-475	15.22	14.5
S19	25132	KEARSLEY ST	1-475	15.32	14.5
S20	25132	E BD LONGWAY BLVD	1-475	14.83	14.5
S21	25132	W BD LONGWAY BLVD	1-475	14.83	14.5
S29	25132	CARPENTER ROAD	1-475	14.50	14.5
S30	25132	SELBY STREET	1-475	14.90	14.5
S31	25132	COLDWATER ROAD	1-475	14.99	14.5
S36	25132	TERRY STREET	1-475	14.57	14.5
S39	25132	JENNINGS RD	1-475	14.50	14.5
S40	25132	LEFT TURN LANE NO1	1-475	14.99	14.5
S41	25132	LEFT TURN LANE NO2	1-475	14.57	14.5
S46	25132	$1-475$ RAMP B	1-475	14.73	14.5
S49	25132	CORNELL AVE	1-475	14.83	14.5
S51	25132	RUSSELL AVE	1-475	14.83	14.5
S52	25132	14TH ST	1-475	17.98	14.5
X02	25132	GTW RR	1-475	14.83	14.5
S02	33044	CLARE ST	1-496	18.31	14.5
S05	33044	M-99(MLK AVE NB)	1-496	15.06	14.5
S06	33044	RAMP H	1-496 EB	14.57	14.5
S07	33044	RAMP E	1-496 WB	14.99	14.5
S08	33044	PINE ST	1-496	18.57	14.5
S09	33044	WALNUT ST	1-496	17.81	14.5
S10	33044	CAPITOL AVE	1-496	15.98	14.5
S11	33044	WASHINGTON AVE	1-496	17.32	14.5
S12	33044	GRAND AVE	1-496	15.75	14.5

Previously Exempted Highly Urbanized Routes					
				Underclearance in Ft.	
Structure Number	Control Section	Structure Carry Traffic On	Structure over	Existing	Required
S13	33044	EVERETT ST	1-496	14.90	14.5
S14	33044	SB M-99 (BIRCH)	1-496	14.90	14.5
S15	33044	ST JOSEPH-MAIN ST	1-496	14.50	14.5
S16	33044	HUNGERFORD ST	1-496	14.44	14.5
S17	33044	1-496 WB	1-496 RAMP TO US-127	14.76	14.5
$\times 01$	33044	CONRAIL	1-496	15.42	14.5
B01	33045	1-496 EB	RED CEDAR R \& RAMP V	15.06	14.5
B02	33045	1-496 WB	RED CEDAR R \& RAMP V	15.75	14.5
R13	33045	CLEMENS ST	$1-496$ \& CSX RR	23.92	23
S15	33045	DUNCKEL DRIVE	1-496	14.57	14.5
S02	39051	BARNEY RD (HAVE)	US-131 BR	14.83	14.5
B01	41027	1-196 WB FR US-131	I-196 EB	14.67	14.5
B01	41027	I-196 WB TO US131	1-196 EB	14.67	14.5
S02	41027	US-131 NB	I-196 EB, M-21	17.32	14.5
S03	41027	US-131 SB	I-196 EB, M-21	14.90	14.5
S04	41027	US-131 SB	I-196 WB TO I-196,131 NB	15.65	14.5
S07	41027	SCRIBNER	I-196 EB	14.67	14.5
S16	41027	COIT AVE	\|-196 \& M-21	18.67	14.5
S18	41027	COLLEGE AVE	1-196	18.67	14.5
S19	41027	EASTERN AVE	1-196 \& M-21	15.58	14.5
S20	41027	DIAMOND AVE	1-196 \& M-21	15.91	14.5
S21	41027	FULLER AVE	1-196 \& M-21	15.42	14.5
S24	41027	MARYLAND AVE	1-196 \& M-21	15.06	14.5
503	41131	76 TH ST	US-131	14.24	14.5
S04	41131	68 TH ST	US-131	16.40	14.5
S05	41131	54 TH ST	US-131	15.06	14.5
S06	41131	44TH ST	US-131	13.98	14.5
S07	41131	36 TH ST	US-131	14.01	14.5
S08	41131	32ND ST	US-131	15.98	14.5
S09	41131	M-11	US-131	13.98	14.5
S10	41131	BURTON ST	US-131	14.83	14.5
S11	41131	HALL ST	US-131 \& CENTURY AVE	19.32	14.5
S01	50111	9 MI RD SB TURN RD	1-94	15.06	14.5
S02	50111	9 MI RD	1-94	14.90	14.5
S03	50111	9 MI RD NB TURN RD	1-94	14.73	14.5
S04	50111	STEPHENS DR	1-94	15.06	14.5
S05	50111	10 MI RD S INT	1-94	15.16	14.5
S06	50111	10 MI RD	1-94	14.50	14.5
S07	50111	10 MI RD N INT	1-94	15.06	14.5
S08	50111	FRAZHO RD	1-94	14.73	14.5
S12	63022	M-102 EB	FARMINGTON RD	14.73	14.5
S12	63022	M-102 WB	FARMINGTON RD	14.73	14.5
S14	63022	M-102 WB	GRAND RIVER E.B. CONN	14.57	14.5
S01	63051	M-1 OVER 8 MI RD	M-102 8 MI RD \& RAMPS	14.30	14.5
S01	63051	M-1 NB RAMP	M-102 8 MILE RD	14.30	14.5
S01	63051	M-1 SB RAMP	M-102 8 MILE RD	14.30	14.5

Previously Exempted Highly Urbanized Routes					
				Underclearance in Ft.	
Structure Number	Control Section	Structure Carry Traffic On	Structure over	Existing	Required
S01	63081	JLHUDSON DR	M-10	15.49	14.5
S02	63081	M-39 (RAMP H)	M-10 NB (RAMP G)	14.73	14.5
S03	63081	M-10 (RAMP B)	M-10 RAMP	14.73	14.5
S05	63081	M-39 NB	M-10	15.06	14.5
S07	63081	9 MI RD	M-10 RAMP	14.99	14.5
S08	63081	9 MI RD	M-10	14.99	14.5
S09	63081	M-39 SB	M-10 RAMP C	14.34	14.5
S10	63081	MOUNT VERNON ST	M-10	14.83	14.5
S11	63081	EVERGREEN RD.(NB)	M-10	14.99	14.5
S11	63081	EVERGREEN RD (SB)	M-10	14.99	14.5
S12	63081	10 MI RD	M-10	15.22	14.5
S13	63081	10.5 MI RD	M-10	15.32	14.5
S14	63081	LAHSER RD	M-10	14.24	14.5
S15	63081	NORTHLAND DR EB	M-10	14.99	14.5
S15	63081	NORTHLAND DR WB	M-10	14.99	14.5
S16	63081	LEFT TURN STRUCT	M-10	14.83	14.5
S04	63103	SHEVLIN DBL U TURN	1-75	15.42	14.5
S05	63103	1-696	1-75 \& 4 RAMPS	15.98	14.5
X01	63151	GTW RR	US-24BL	13.65	14.5
S06	63172	1 1-75 NB	M-24 \& I-75 BL	14.24	14.5
S06	63172	$1-75$ SB	M-24 \& I-75 BL	14.24	14.5
S07	63172	M-24 CONN EB	1-75	16.08	14.5
S07	63172	M-24 CONN WB	1-75	16.08	14.5
S37	63174	M-59 WB RMP/ /-75S	I-75 RMP(A2,A7,A14)		14.5
S03	63192	I-96, RAMP J	M-5 NB	18.70	14.5
P01	73101	@21ST ST WALKOVER	1-675	14.99	17
P02	73101	ELEVENTH ST WALKOV	1-675	16.14	17
S03	73101	OUTER DR	1-675	14.57	14.5
S04	73101	VETREANS MEM PKWY	1-675	14.57	14.5
S04	73101	VETREANS MEM PKWY	1-675	14.57	14.5
S05	73101	14 TH ST	1-675	16.50	14.5
S15	73101	TITTABAWASSEE RD	1-675	14.40	14.5
S16	73101	MICHIGAN RD	1-675	14.99	14.5
S19	73101	MCCARTY RD	1-675	14.40	14.5
S24	73101	I-675 RAMP TO I-75	1-675 \& \|-75	17.49	14.5
X01	73101	CSX RR	1-675	14.67	14.5
S03	82021	1-94 WB	HANNAN RD	14.50	14.5
S06	82021	I-94 EB	HANNAN RD	14.50	14.5
S02	82022	I-94 EB	WAYNE RD	14.99	14.5
S03	82022	1-94 WB	WAYNE RD	14.99	14.5
S04	82022	1-94 EB	MERRIMAN RD	14.50	14.5
S04	82022	1-94 WB	MERRIMAN RD	14.50	14.5
505	82022	1-94 EB	MIDDLEBELT RD	15.42	14.5
S06	82022	I-94 WB	MIDDLEBELT RD	14.92	14.5
S07	82022	1-94 EB	INKSTER RD	15.65	14.5
S08	82022	1-94 WB	INKSTER RD	15.00	14.5

Previously Exempted Highly Urbanized Routes					
				Underclearance in Ft.	
Structure Number	Control Section	Structure Carry Traffic On	Structure over	Existing	Required
S09	82022	1-94 EB	ECORSE RD	15.22	14.5
S10	82022	1-94 WB	ECORSE RD	14.99	14.5
S17	82022	1-94 EB	PELHAM RD	15.49	14.5
S18	82022	1-94 WB	PELHAM RD	14.30	14.5
S23	82022	1-94 EB	OUTER DR	14.50	14.5
S24	82022	1-94 WB	OUTER DR	15.22	14.5
S25	82022	1-94 EB	OAKWOOD BLVD	14.40	14.5
S26	82022	1-94 WB	OAKWOOD BLVD	14.07	14.5
S27	82022	1-94	GREENFIELD RD	14.73	14.5
S29	82022	SCHAEFER HWY	1-94	16.90	14.5
S30	82022	ROTUNDA DRIVE	1-94	14.57	14.5
S31	82022	MILLER RD	1-94	15.22	14.5
S32	82022	RAMP FROM US-12EB	1-94	14.67	14.5
S33	82022	US-12 (MICHIGAN AV	1-94 RAMP	13.75	14.5
S34	82022	US-12 (MICHIGAN AV	1-94	14.99	14.5
S35	82022	RAMP TO US-12	1-94	14.24	14.5
S36	82022	M-153, WYOMING AVE	1-94	14.67	14.5
S37	82022	OZGA RD	1-94	15.16	14.5
S39	82022	1-94EB RAMP	GREENFIELD RD	14.67	14.5
S40	82022	I-94 E.B.RMP	PELHAM RD	15.16	14.5
S42	82022	1-94 EB RMP	PELHAM RMP	16.24	14.5
S43	82022	M-39 SB RAMP L	1-94	16.24	14.5
S43	82022	M-39 SB RAMP K	1-94	16.24	14.5
S52	82022	RAMP H TO SB MERRI	N BD MERRIMAN ROAD	0.00	14.5
S55	82022	VAN BORN	I-94 EB RAMP	16.24	14.5
S56	82022	VINING RD	1-94 INTERCHANGE	14.73	14.5
X03	82022	CONRAIL	1-94	13.98	14.5
X04	82022	CONRAIL	1-94	13.98	14.5
$\times 05$	82022	CONRAIL(ABN DT RR)	1-94	13.75	14.5
X06	82022	CONRAIL(ABN C\&O RR	1-94	18.50	14.5
$\times 07$	82022	CSX RR	1-94	19.00	14.5
X99	82022	GTW RR	194 ACCESS RD-GATE 10	13.98	14.5
P01	82023	TRENTON AVE WALKOV	1-94	13.98	17
P02	82023	LUMLEY AVE WALKOVE	1-94	13.65	17
P03	82023	TARNOW AVE WALKOVE	1-94	14.07	17
P04	82023	ROOSEVELT AVE WALK	1-94	14.30	17
P05	82023	BROOKLYN AV WALKOV	1-94	14.50	17
S01	82023	WEIR RD	1-94	14.24	14.5
S02	82023	ADDISON RD	1-94	14.17	14.5
S03	82023	LONYO AVE	1-94	14.99	14.5
S04	82023	CENTRAL AVE	1-94	14.24	14.5
S05	82023	CECIL AVE	1-94	14.17	14.5
S06	82023	MARTIN AVE	1-94	13.91	14.5
S07	82023	LIVERNOIS AVE	1-94	14.50	14.5
S09	82023	JUNCTION ST	1-94	14.30	14.5
S10	82023	30 THST	1-94	14.07	14.5

Previously Exempted Highly Urbanized Routes					
				Underclearance in Ft.	
Structure Number	Control Section	Structure Carry Traffic On	Structure over	Existing	Required
S11	82023	WARREN AVE	1-94	13.65	14.5
S12	82023	SCOTTEN AVE	1-94	14.50	14.5
S13	82023	SB W GRAND BLVD	1-94	14.17	14.5
S14	82023	NB W GRAND BLVD	1-94	14.07	14.5
S15	82023	24TH ST	1-94	14.50	14.5
S17	82023	GRAND RIVER AVE	1-94	14.67	14.5
S18	82023	LINWOOD AVE	1-94	14.24	14.5
S19	82023	14 TH ST	\|-94	14.30	14.5
S20	82023	12 TH ST	1-94	14.17	14.5
S21	82023	TRUMBULL AVE	1-94	14.24	14.5
S22	82023	M-10 SB	1-94 RAMP	23.65	14.5
S23	82023	1-94 EB	1-94 RAMP TO M-10	14.30	14.5
S24	82023	M-10 SB	1-94	14.24	14.5
S25	82023	I-94EB RAMP TO M10	M-10SB \&1-94WB	14.30	14.5
S26	82023	I-94WB RAMP TO M10	M-10NB \& $1-94 E B$	14.24	14.5
S27	82023	M-10 NB	1-94	14.07	14.5
S28	82023	1-94 WB	I-94 RAMP FROM M-10	14.17	14.5
S29	82023	M-10 NB	I-94 RAMP FROM M-10	23.65	14.5
S30	82023	THIRD ST	1-94	14.67	14.5
X01	82023	CSXRR	1-94	14.08	14.5
$\times 02$	82023	CONRAIL	1-94	14.50	14.5
X02	82023	GTW \& CONRAIL	1-94	14.50	14.5
P04	82024	HELEN AVE WALKOVER	1-94	14.24	17
P05	82024	PED X-OVER@TOWNS	1-94	14.24	17
P06	82024	SEMINOLE AVE WALK	1-94	16.31	17
P07	82024	ROHNS AVE WALKOVER	1-94	14.14	17
S01	82024	SECOND BLVD	1-94	14.99	14.5
S02	82024	CASS AVE	1-94	16.08	14.5
S03	82024	M-1 WOODWARD AVE	1-94	14.30	14.5
S04	82024	JOHN R ST	1-94	14.30	14.5
S05	82024	BRUSH ST	1-94	14.57	14.5
S06	82024	BEAUBIEN ST	1-94	15.58	14.5
S08	82024	CHENE ST	1-94	14.30	14.5
S09	82024	WB E GRAND BLVD	1-94	14.50	14.5
S09	82024	EB E GRAND BLVD	1-94	14.50	14.5
S10	82024	MT ELLIOT ST	1-94	14.30	14.5
S11	82024	CONCORD AVE	1-94	15.06	14.5
S12	82024	FRONTENAC AVE	1-94	13.98	14.5
S13	82024	M-53(VANDYKE ST)	1-94	14.17	14.5
S14	82024	BURNS AVE	1-94	14.44	14.5
S15	82024	MCCLELLAN AVE	1-94	14.50	14.5
S16	82024	HARPER AVE	1-94	15.16	14.5
S18	82024	LUCKY PLACE	1-94	16.24	14.5
S19	82024	SAGINAW ST U-TRN	1-94	16.24	14.5
X02	82024	CONRAIL	1-94	14.07	14.5
P02	82025	SPRINGFIELD AVE WA	1-94	16.50	17

Previously Exempted Highly Urbanized Routes					
				Underclea	ance in Ft.
Structure Number	Control Section	Structure Carry Traffic On	Structure over	Existing	Required
P03	82025	MALCOLM AVE WALKOV	1-94	15.25	17
P04	82025	COPLIN AVE WALKOVE	1-94	15.81	17
P05	82025	NEWPORT AVE WALKOV	1-94	15.06	17
P06	82025	PHILIP AVE WALKOVE	1-94	15.42	17
P07	82025	LAKEPOINTE AV WALK	1-94	15.49	17
P08	82025	CHATSWORTH RD WALK	1-94	14.40	17
P09	82025	BEDFORD RD WALKOVE	1-94	15.03	17
P12	82025	BISHOP AVE WALKOVE	1-94	14.30	17
P13	82025	KENOSHA AVE WALKOV	1-94	14.24	17
P14	82025	WOODLAND AV WALKOV	1-94	13.98	17
P15	82025	WOODMONT WALKOVER	1-94	14.30	17
P16	82025	KENMORE AVE WALKOV	1-94	14.30	17
P17	82025	BEAUFAIT AV WALKOV	1-94	14.07	17
S01	82025	M-3 (GRATIOT)	1-94	14.07	14.5
S02	82025	CADILLAC AVE	1-94	14.30	14.5
S03	82025	FRENCH ROAD	1-94	14.30	14.5
S04	82025	SB CONNER AVE	1-94	14.83	14.5
S05	82025	NB CONNER AVE	1-94	14.50	14.5
S06	82025	BARRETT AVE	1-94	14.83	14.5
S07	82025	DICKERSON AVE	1-94	14.30	14.5
S08	82025	CHALMERS AVE	1-94	14.24	14.5
S09	82025	OUTER DRIVE NB	1-94	14.57	14.5
S09	82025	OUTER DRIVE SB	1-94	14.57	14.5
S10	82025	NOTTINGHAM RD	1-94	14.40	14.5
S11	82025	HARPER AVE	1-94	14.67	14.5
S12	82025	WHITTIER RD	1-94	14.50	14.5
S13	82025	CADIEUX AVE	1-94	14.57	14.5
S14	82025	MORANG AVE	1-94	14.57	14.5
S15	82025	HARPER AVE	1-94	14.57	14.5
S16	82025	MOROSS RD NB	1-94	14.57	14.5
S16	82025	MOROSS RD SB	1-94	14.57	14.5
S17	82025	WOODSIDE AVE	1-94	14.24	14.5
S18	82025	ALLARD AVE	1-94	14.57	14.5
S19	82025	LOCHMORE AVE	I-94	14.57	14.5
S20	82025	M-102 EB	1-94	14.40	14.5
S20	82025	M-102 WB	1-94	14.40	14.5
S21	82025	HARPER AVE.	1-94	14.30	14.5
S22	82025	8 MI RD	1-94	15.06	14.5
$\times 01$	82025	CR RR	1-94	14.73	14.5
X01	82025	CR RR SPUR BR(ABN)	1-94	14.73	14.5
S02	82041	ECORSERD	US-24	15.16	14.5
$\times 01$	82051	GTW RR	US-24	15.49	14.5
X02	82052	NS RR	US-24	14.99	14.5
X03	82052	CONRAIL	US-24	14.67	14.5
P01	82053	FRISBEE ST WALKOVE	US-24	15.75	17
$\times 01$	82053	CSXRR	US-24	13.67	14.5

Previously Exempted Highly Urbanized Routes					
				Underclearance in Ft.	
Structure Number	Control Section	Structure Carry Traffic On	Structure over	Existing	Required
X01	82053	CSXRR	US-24 SB	13.67	14.5
X01	82061	CSXRR	US-12	14.50	14.5
S01	82062	US-12 EB	US-24	14.30	14.5
S01	82062	US-12 WB	US-24	14.30	14.5
S03	82062	GREENFIELD RD	US-12	14.40	14.5
S04	82062	SCOTTEN AVE	US-12	13.98	14.5
$\times 01$	82062	CSX RR	US-12	14.67	14.5
X01	82062	GTW RR	US-12	14.67	14.5
X02	82062	CONRAIL	US-12	13.75	14.5
X03	82062	CONRAIL	US-12	13.98	14.5
$\times 07$	82071	CONRAIL	1-75 RAMP C\& NB OLD 25	15.08	14.5
$\times 01$	82073	CONRAIL \& C\&O RRS	M-85 (FORT ST)	14.33	14.5
$\times 02$	82073	NORFOLK \& WEST RR	M-85 (FORT ST)	13.81	14.5
$\times 03$	82073	CONRAIL	M-85 (FORT ST)	13.81	14.5
P01	82081	PED X-OVER	M-153	15.00	17
S02	82081	MILLER RD	M-153	13.65	14.5
S03	82081	GREENFIELD RD	M-153	14.73	14.5
S06	82081	EVERGREEN RD NB	M-153	14.83	14.5
S06	82081	EVERGREEN RD SB	M-153	14.83	14.5
X01	82081	CSX RR	M-153	14.83	14.5
$\times 02$	82081	CR RR	M-153	13.00	14.5
S04	82103	WOODWARD AVE UTURN	M-8, DAVISON FWY	14.50	14.5
S11	82103	HAMILTON AVENUE	M-8, DAVISON FWY	14.50	14.5
S12	82103	THIRD AVENUE	M-8, DAVISON FWY	14.50	14.5
S13	82103	SECOND AVENUE	M-8, DAVISON FWY	14.50	14.5
P01	82104	CHAREST AVE WALKOV	M-8	14.40	17
S02	82104	JOHN R STREET	M-8, DAVISON FWY	14.50	14.5
S04	82104	SB OAKLAND AVENUE	M-8, DAVISON FWY	14.90	14.5
S05	82104	PROP M14 WB RAMP	S SERVICE RD	14.99	14.5
S06	82104	N SERVICE RD	PROP M-14 WB RAMP	14.57	14.5
S07	82104	JOSEPH CAMPAU	M-8	15.49	14.5
S08	82104	GODDARD AVENUE	M-8	14.67	14.5
S09	82104	NB OAKLAND AVENUE	M-8, DAVISON FWY	14.90	14.5
P02	82111	PORTER ST WALKOVER	M-10	14.07	17
P03	82111	ELIZABETH ST WALK	M-10	18.08	17
P04	82111	SPRUCE ST WALKOVER	M-10	14.40	17
P05	82111	SELDEN AVE WALKOVE	M-10	14.07	17
P06	82111	CANFIELD AV WALKOV	M-10	14.24	17
P07	82111	MERRICK AVE WALKOV	M-10	14.17	17
P08	82111	JOE L WALKWAY	M-10 LODGE FWY	14.83	17
S01	82111	MONROE AVE	1-375	14.30	14.5
S02	82111	LAFAYETTE AVE	1-375	14.24	14.5
S03	82111	LARNED ST	1-375	14.24	14.5
S04	82111	JEFFERSON AVE	1-375	15.65	14.5
S04	82111	JEFFERSON AVE(EB)	1-375	15.65	14.5
S04	82111	JEFFERSON AV(WB)	1-375	15.65	14.5

Previously Exempted Highly Urbanized Routes					
				Underclearance in Ft.	
Structure Number	Control Section	Structure Carry Traffic On	Structure over	Existing	Required
S05	82111	HASTINGS	1-375	14.57	14.5
S06	82111	WASHINGTON ST	M-10	15.06	14.5
S10	82111	LARNED ST RAMP	M-10 NB	14.24	14.5
S11	82111	M-85 (FORT ST,)	M-10	13.98	14.5
S12	82111	LAFAYETTE BLVD	M-10	14.44	14.5
S13	82111	HOWARD ST	M-10	13.98	14.5
S14	82111	US-12	M-10 NB	14.11	14.5
S14	82111	US-12	M-10 SB	14.11	14.5
S14	82111	BAGLEY AV RAMPS	M-10	14.11	14.5
S16	82111	GRAND RIVER AVE	M-10	14.17	14.5
S17	82111	M L KING (STIMSON)	M-10	14.17	14.5
S18	82111	FOREST AVE	M-10	14.07	14.5
S19	82111	WARREN AV	M-10	13.94	14.5
S22	82111	JEFFERSON EB/NB375	1-375 SB	\#N/A	14.5
S23	82111	WOODBRIDGE ST	1 -375	\#N/A	14.5
$\times 01$	82111	WCCCRR (ABN)	M-10	14.17	14.5
$\times 01$	82111	RR PARK'GDECK(ABN)	M-10	14.17	14.5
$\times 01$	82111	RR PEDESTRIAN WALK	M-10	14.17	14.5
Z01	82111	COBO HALL	M-10	\#N/A	14.5
P01	82112	HOLDEN AVE WALKOVE	M-10	13.91	17
P02	82112	PINGREE AV WALKOVE	M-10	14.30	17
P03	82112	GLADSTONE AVE WALK	M-10	14.17	17
P04	82112	MONTEREY AV WALKOV	M-10	14.50	17
P05	82112	HIGHLAND AV WALKOV	M-10	14.07	17
P08	82112	FORD AVE WALKOVER	M-10	14.30	17
P09	82112	LOG CABIN AV WALKO	M-10	14.24	17
P10	82112	BAYLIS AVE WALKOVE	M-10	14.30	17
P11	82112	ALDEN AVE WALKOVER	M-10	14.30	17
P12	82112	MUIRLAND AV WALKOV	M-10	14.50	17
P14	82112	TULLER AVE WALKOVE	M-10	14.24	17
P15	82112	NORTHLAWN AV WALKO	M-10	17.98	17
P16	82112	WISCONSIN AVE WALK	M-10	14.73	17
P17	82112	MARGARETA AVE WALK	M-10	13.98	17
S01	82112	MILWAUKEE AVE	M-10	14.24	14.5
S02	82112	W GRAND BOULEVARD	M-10	14.24	14.5
S03	82112	PALLISTER AVENUE	M-10	14.24	14.5
S04	82112	SEWARD AVENUE	M-10	14.24	14.5
S05	82112	EUCLID AVENUE	M-10	14.30	14.5
S06	82112	CLAIRMOUNT AVENUE	M-10	14.17	14.5
S07	82112	HAMILTON AVENUE	M-10	14.30	14.5
S08	82112	CHICAGO BLVD	M-10	14.17	14.5
S09	82112	CALVERT AVE	M-10	14.07	14.5
S10	82112	WEBB AVE	M-10	14.40	14.5
S11	82112	GLENDALE AVE	M-10	14.34	14.5
S12	82112	EB DAVISON M-8	M-10SB	15.49	14.5
S13	82112	M-10 NB	DAVISON (M-8)	14.50	14.5

Previously Exempted Highly Urbanized Routes					
				Underclearance in Ft.	
Structure Number	Control Section	Structure Carry Traffic On	Structure over	Existing	Required
S14	82112	M-10 RAMP	EB DAVISON (M-8)	14.50	14.5
S15	82112	WB DAVISON (M-8)	M-10SB	15.65	14.5
S16	82112	NB TO WB DAVISON	M-10 SB	19.00	14.5
S17	82112	OAKMAN BLVD	M-10	14.24	14.5
S18	82112	ROSA PARKS BLVD.	M-10	15.06	14.5
S19	82112	LINWOOD AVE	M-10 JOHN LODGE (EXPWY	14.57	14.5
S20	82112	DEXTER-BELDEN AVE.	M-10 JOHN LODGE(EXPWY)	14.24	14.5
S21	82112	LIVERNOIS AVE	M-10	14.17	14.5
S22	82112	GREENLAWN AVE	M-10	14.50	14.5
S23	82112	WYOMING AVE	M-10	14.40	14.5
S24	82112	PURITAN AVE	M-10	13.98	14.5
S25	82112	MYERS RD	M-10	14.50	14.5
S25	82112	MYERS RD TURNAROUN	M-10	14.50	14.5
S26	82112	MCNICHOLS RD	M-10	14.83	14.5
S27	82112	OUTER DRIVE EB	M-10	14.99	14.5
S27	82112	OUTER DRIVE WB	M-10	14.99	14.5
S28	82112	SCHAFFER	M-10	15.06	14.5
S28	82112	SCHAEFER SE TURN	M-10	15.06	14.5
S28	82112	SCHAEFER NW TURN	M-10	15.06	14.5
S29	82112	7 MI RD	M-10	14.99	14.5
S30	82112	VASSAR DRIVE	M-10	15.16	14.5
S31	82112	PEMBROKE AVE	M-10	14.50	14.5
S32	82112	GREENFIELD RD	M-10	15.22	14.5
S32	82112	GREENFIELD RD TURN	M-10	15.22	14.5
S33	82112	NEWJERSEY TRN(M10)	M-10	18.31	14.5
S34	82112	M-102 RAMP	M-10 RAMP	17.06	14.5
S34	82112	M-102 WB SERV RD	M-10	17.06	14.5
S34	82112	M-102 EB SERV RD	M-10	17.06	14.5
S34	82112	M-102	M-10 \& RAMPS	17.06	14.5
S35	82112	GREENFIELD RD LT T	M-10	14.30	14.5
S36	82112	LIVERNOIS AVE	M-10	14.17	14.5
X01	82112	CONRAIL	M-10	14.50	14.5
X01	82112	GTW RR	M-10	14.50	14.5
X02	82112	CONRAIL	M-10	13.75	14.5
P02	82121	PED@ JORDAN COLL	GRAND RIVER (M-5)	15.65	17
X01	82121	CONRAIL	GRAND RIVER AVE	13.98	14.5
X01	82121	GTW RR	GRAND RIVER AVE	13.98	14.5
P01	82122	BENTLER PED X-OVER	1-96	15.49	17
P02	82122	STOUT AVE PED X-OV	1-96	16.17	17
P03	82122	MINOCK PED X-OVER	1-96	16.33	17
R01	82122	EVERGREEN RD	1-96 \& CSX RR	16.50	$\begin{gathered} \hline 14.5 \mathrm{RD} \\ 23 \mathrm{RR} \end{gathered}$
S01	82122	SCHOOLCRAFT RD	1-96	14.40	14.5
S02	82122	NEWBURGH RD	1-96	15.42	14.5
S03	82122	LEVAN RD	1-96	15.75	14.5
S04	82122	YALE AVE	1-96	14.83	14.5

Previously Exempted Highly Urbanized Routes					
				Underclea	ance in Ft.
Structure Number	Control Section	Structure Carry Traffic On	Structure over	Existing	Required
S05	82122	STARK RD	1-96	15.16	14.5
S06	82122	FARMINGTON RD	1-96	14.83	14.5
S07	82122	BROOKFIELD AVE	1-96	15.32	14.5
S08	82122	BERWICK RD LFT TRN	1-96	14.73	14.5
S09	82122	MERRIMAN RD	1-96	15.98	14.5
S10	82122	WARNER COURT	1-96	14.73	14.5
S11	82122	MIDDLEBELT RD	1-96	15.81	14.5
S12	82122	RACE TRACK ENT.	1-96	14.99	14.5
S13	82122	CARDWELL RD	1-96	14.57	14.5
S14	82122	INKSTER RD	1-96	14.57	14.5
S15	82122	BREAKFAST U-TRN LN	1-96	14.50	14.5
S16	82122	BEECH DALY RD	1-96	16.31	14.5
S17	82122	GARFIELD ST U-TRN	1-96	14.90	14.5
S18	82122	FENTON ST	1-96	14.40	14.5
S19	82122	US-24 TELEGRAPH RD	1-96	14.57	14.5
S19	82122	NB SERV RD	1-96	14.57	14.5
S19	82122	SB SERV RD	$1-96$	14.57	14.5
S20	82122	VIRGIL ST	1-96	14.57	14.5
S21	82122	OUTER DRIVE	1-96	14.83	14.5
S22	82122	BURT RD	1-96	14.73	14.5
S23	82122	SCHOOLCRAFT X-OVER	1-96	14.40	14.5
S24	82122	GLENDALE AVE	1-96	15.32	14.5
S25	82122	INDUSTRIAL AVE	1-96	14.50	14.5
S26	82122	BERWYN STREET	1-96	14.99	14.5
S27	82122	MERRIMAN ROAD LT T	1-96	14.83	14.5
S28	82122	MERRIMAN ROAD LT T	1-96	14.99	14.5
S29	82122	MELVIN	1-96	14.67	14.5
S30	82122	LFT TRN W MIDLBELT	1-96	14.90	14.5
S31	82122	LFT TRN E MIDLBELT	1-96	14.73	14.5
S32	82122	LFT TRN W INKSTER	1-96	14.73	14.5
S33	82122	LFT TRN E INKSTER	1-96	14.57	14.5
S34	82122	LFT TRN W BEECH DL	1-96	14.99	14.5
S35	82122	LFT TRN E BEECH DL	1-96	14.99	14.5
S36	82122	LFT TRN W OF LEVAN	1-96	14.83	14.5
S37	82122	LFT TRN E OF LEVAN	1-96	14.90	14.5
S38	82122	FARMINGTON LFT TRN	1-96	14.90	14.5
S39	82122	FARMINGTON LFT TRN	1-96	14.99	14.5
S40	82122	WAYNE RD	$1-96$	14.73	14.5
S41	82122	NEWBURGH DBL U-TRN	1-96	15.91	14.5
S42	82122	NEWBURGH ELFT TRN	1-96	14.99	14.5
$\times 02$	82122	CSXRR	1-96	14.50	14.5
$\times 03$	82122	CSXRR	1-96	14.58	14.5
P01	82123	SORENTO PED X-OVER	1-96	17.98	17
P02	82123	MENDOTA PED X-OVER	1-96	15.98	17
P03	82123	CHERRYLAWN PED X-O	1-96	17.98	17
P04	82123	CLARENDON AV WALKO	1-96	15.98	17

Previously Exempted Highly Urbanized Routes					
				Underclearance in Ft.	
Structure Number	Control Section	Structure Carry Traffic On	Structure over	Existing	Required
P05	82123	IVANHOE AVE WALKOV	1-96	14.73	17
P06	82123	ROOSEVELT WALKOVER	1-96	15.58	17
P07	82123	MANSFIELD PED X-OV	1-96 \& C\&O RR	16.17	17
R02	82123	TURN RDWY 3RD LEVL	CSX RR \& I-96 RDWYS	14.50	$\begin{gathered} 14.5 \mathrm{RD} \\ \text { 23 RR } \end{gathered}$
R03	82123	TURN RDWY 4TH.LEVL	CSX RR \& 3RD LEVEL T RD	14.50	$\begin{aligned} & 14.5 \mathrm{Rd} \\ & 23.0 \mathrm{RR} \end{aligned}$
R05	82123	GREENFIELD RD	1-96 \& CSX RR	14.83	$\begin{gathered} 14.5 \mathrm{RD} \\ 23 \mathrm{RR} \end{gathered}$
S01	82123	TURN RDWY EB TO SB	WB\&U-TURN SERVICE ROA	19.98	14.5
S02	82123	WB TO SB TURN RDWY	3RD LEVEL TURN.RDWY	14.50	14.5
S03	82123	TURN.RDWY 3RD LEVL	I-96 ROADWAYS	14.50	14.5
S04	82123	U-TRN SERV RD	M-39(SOUTHFIELD EXPR)	14.83	14.5
S05	82123	1-96 EB COLLECTOR	M-39(SOUTHFILD EXPR)	15.49	14.5
S06	82123	1-96 EB MAIN RDWY	M-39(SOUTHFIELD EXPR)	16.50	14.5
507	82123	1-96 WB COLLECTOR	M-39 (SOUTHFIELD EXPR)	21.23	14.5
S08	82123	1-96 RAMP NB TO EB	M-39 RAMP \& E SERVICE R[14.50	14.5
S09	82123	1 -96 WB MAIN RDWY	M-39 (SOUTHFIELD EXPR)	17.49	14.5
S10	82123	1-96 RAMP	E B SERVICE RD	14.83	14.5
S11	82123	1-96 RAMP	W B SERVICE RD	13.92	14.5
S12	82123	HUBBELL AVE	1-96 (JEFFRIES FRWY)	14.67	14.5
S13	82123	FULLERTON AVE	1-96 (JEFFRIES FRWY)	15.58	14.5
S14	82123	SCHAEFER RD	1-96 (JEFFRIES FRWY)	15.22	14.5
S15	82123	GR RIV LT TRN(M-5)	1-96 (JEFFRIES FRWY)	15.98	14.5
S16	82123	GRAND RIVER AVE	1-96 (JEFFRIES FRWY)	15.75	14.5
S17	82123	MEYERS RD	1-96 (JEFFRIES FRWY)	14.67	14.5
S18	82123	WYOMING AVE	1-96 (JEFFRRIES FRWY)	15.42	14.5
S19	82123	1-96 (JEFFRIES)	M-8	14.99	14.5
S21	82123	$1-96$ WB COLLECTOR	M-8	15.49	14.5
S22	82123	1-96 W DAV TO E.JE	M-8	15.91	14.5
S23	82123	WB DAV TO EB JEFFR	1-96 JEFFRIES FREEWAY	15.58	14.5
S24	82123	FULLERTON AVE	1-96 (JEFFRIES FRWY)	15.49	14.5
S25	82123	OAKMAN BLVD EB	1-96 (JEFFRIES FRWY)	16.14	14.5
S25	82123	OAKMAN BLVD WB	1-96 (JEFFRIES FRWY)	16.14	14.5
S26	82123	ELMHURST AVE	1-96	15.65	14.5
S27	82123	U-TURN N OF G RIV	1-96	15.65	14.5
S28	82123	GRAND RIVER AVE	1-96	14.99	14.5
S29	82123	WEST CHICAGO AVE	1-96	13.98	14.5
S30	82123	LIVERNOIS AVE	1-96	14.57	14.5
S31	82123	LIVERNOIS LEFT TUR	1-96	14.17	14.5
S32	82123	UNDERWOOD AVE	1-96	14.99	14.5
S33	82123	JOY RD	1-96	14.83	14.5
S34	82123	MAPLEWOOD AVE	1-96	14.57	14.5
S35	82123	PACIFIC AVE	1-96	14.73	14.5
S36	82123	W GD BLVD \& TIREMA	1-96	15.16	14.5
S37	82123	W GD BLVD\&TIREMAN	1-96	15.16	14.5

Previously Exempted Highly Urbanized Routes

				Underclearance in Ft.	
Structure Number	Control Section	Structure Carry Traffic On	Structure over	Existing	Required
S38	82123	MC GRAW AVE	1-96	14.40	14.5
S39	82123	1-96	RAMP FROM 1-94	14.67	14.5
S40	82123	1-96	RAMP TO 1-94	14.73	14.5
S41	82123	1-96EB TO 194EB RA	1-96	15.42	14.5
S42	82123	196WB TO 194WB RAM	$1-96$ \& RAMP	14.67	14.5
S43	82123	GD RIV ENT TO I94W	RAMP TO I-94	14.17	14.5
S44	82123	I94EB RAMP TO 196W	1-94	16.40	14.5
S45	82123	194WB RAMP TO 196E	1-94	15.58	14.5
S46	82123	1-96	1-94	15.65	14.5
S47	82123	GRD RIV AVE EXIT R	1-96 RAMP	14.73	14.5
S48	82123	WARREN AV EXIT RMP	1-96 RAMP	15.22	14.5
S49	82123	WARREN AV ENT RAMP	1-96 RAMP	14.57	14.5
S50	82123	SCOTTEN AVE	1-96	14.40	14.5
S51	82123	EB DAVISON (M-8)	1-96 WYOMING EXIT RAMP	14.83	14.5
X06	82123	CSXRR	1-96 (JEFFRIES FRWY)	14.50	14.5
X07	82123	CONRAIL	1-96 (JEFFRIES FRWY)	15.83	14.5
X08	82123	CONRAIL SPUR	1-96 (JEFFRIES FRWY)	16.17	14.5
X09	82123	CONRAIL (ABN)	1-96 (JEFFRIES FRWY)	15.75	14.5
X10	82123	CONRAIL (ABN)	1-96 (JEFFRIES FRWY)	14.90	14.5
P01	82124	SELDEN AV WALKOVER	1-96	14.83	17
S01	82124	WARREN AVE	1-96	14.30	14.5
S02	82124	BUCHANAN ST	1-96	14.57	14.5
S03	82124	MYRTLE ST	1-96	14.40	14.5
X01	82124	GTW RR	1-96 (JEFFRIES)	14.24	14.5
X03	82124	CONRAIL	1-96(JEFFRIES)	15.65	14.5
S01	82131	WOODARD AVE, M-1	M-8, DAVISON FWY	14.50	14.5
X01	82131	GTW RR	M-1	13.98	14.5
X01	82131	CONRAIL	M-1	13.98	14.5
X02	82131	CR RR	M-1	13.81	14.5
S01	82141	M-102 EB	US-24	14.67	14.5
S01	82141	M-102 WB	US-24	14.67	14.5
X01	82143	GTW RR	M-102	14.40	14.5
B03	82191	1-75 NB	CR RR,GODDARD RD, SXTN	14.50	14.5
B03	82191	1-75 SB	SEXTON-KILFOIL DR,CR RR	14.50	14.5
S01	82191	1-75	NORTH HURON RIVER DR	14.30	14.5
S02	82191	WOODRUFF RD	1-75	14.07	14.5
S03	82191	M-85 SB	1-75 NB	14.30	14.5
S04	82191	GIBRALTAR RD	1-75	16.08	14.5
S05	82191	VREELAND RD	1-75	14.17	14.5
S06	82191	1-75 NB	VAN HORN RD	26.31	14.5
S06	82191	$1-75$ SB	VAN HORN RD	26.31	14.5
S07	82191	WEST RD	1-75	14.67	14.5
S08	82191	KING RD	1-75	14.07	14.5
S09	82191	$1-75$ CONN NB	1-75	14.99	14.5
S10	82191	$1-75$ CONN SB	1-75	14.24	14.5
S11	82191	SIBLEY RD	1-75	14.57	14.5

Previously Exempted Highly Urbanized Routes					
				Undercle	ance in Ft.
Structure Number	Control Section	Structure Carry Traffic On	Structure over	Existing	Required
S12	82191	PENNSYLVANIA RD	1-75	14.83	14.5
S13	82191	$1-75$ SB	US-24 CONN	14.67	14.5
S14	82191	$1-75$ NB	EUREKA RD	14.99	14.5
S16	82191	1 1-75 NB	ALLEN RD	14.50	14.5
S16	82191	1 -75 SB	ALLEN RD	14.50	14.5
S17	82191	1 -75 NB	NORTH LINE RD	14.83	14.5
S17	82191	1 -75 SB	NORTH LINE RD	14.83	14.5
S19	82191	LONDON MOORE RD	1-75	14.90	14.5
S21	82191	1 -75 NB	TOLEDO-DIX HWY \& RAMP	14.67	14.5
S21	82191	1 -75 SB	TOLEDO-DIX HWY \& RAMP	14.67	14.5
S22	82191	CAMPAIGN RD	1-75	15.32	14.5
S23	82191	$1-75$ NB	M-39	14.67	14.5
S23	82191	1 -75 SB	M-39	14.67	14.5
S24	82191	1-75 RAMP C NB	TOLEDO DIX HWY RAMP D	14.73	14.5
S25	82191	1-75 RAMP D SB	TOLEDO DIX HWY \& RAMP	14.83	14.5
P01	82192	SAWYER AVE WALKOVE	M-39	14.73	17
P03	82192	CATHEDRAL AV WALKO	M-39	14.07	17
P06	82192	GLENDALE PED BR	M-39	14.40	17
S02	82192	OUTER DRIVE S EB	M-39	14.17	14.5
S02	82192	OUTER DRIVE S WB	M-39	14.17	14.5
S03	82192	FERN AVE	M-39	14.17	14.5
S04	82192	OAKWOOD BLVD	M-39	14.50	14.5
S05	82192	ROTUNDA DRIVE	M-39	14.57	14.5
S06	82192	VILLAGE RD	M-39	14.00	14.5
S08	82192	HUBBARD AV EB	M-39	14.67	14.5
S08	82192	HUBBARD AV WB	M-39	14.67	14.5
S09	82192	PAUL AVE	M-39	13.81	14.5
S10	82192	WARREN AVE	M-39	14.30	14.5
S11	82192	TIREMAN AVE	M-39	14.17	14.5
S12	82192	JOY RD	M-39	14.42	14.5
S13	82192	FITZPATRICK AVE	M-39	14.50	14.5
S14	82192	W CHICAGO AVE	M-39	14.30	14.5
S15	82192	PLYMOUTH ROAD	M-39 (SOUTHFIELD)	14.40	14.5
S16	82192	WB FULLERTON AVE	M-39	14.50	14.5
S17	82192	SCHOOLCRAFT AVE	M-39	14.40	14.5
X01	82192	CONRAIL	M-39	14.30	14.5
$\times 02$	82192	CSX RR	M-39	14.67	14.5
$\times 03$	82192	CSX RR	M-39	14.50	14.5
$\times 05$	82192	GTW RR	M-39	14.67	14.5
$\times 06$	82192	CONRAIL	M-39	13.98	14.5
X06	82192	CONRAIL	M-39	13.98	14.5
P02	82193	TOURNIER AV CROSSO	M-39	15.16	17
P03	82193	VASSAR AVE WALKOVE	M-39	15.32	17
S01	82193	LYNDON AVE	M-39	14.73	14.5
S02	82193	M-5(GRAND RIVER)	M-39 (SOUTHFIELD EXP)	14.67	14.5
S03	82193	FENKELL AVE	M-39	14.67	14.5

Previously Exempted Highly Urbanized Routes					
				Underclearance in Ft.	
Structure Number	Control Section	Structure Carry Traffic On	Structure over	Existing	Required
S04	82193	PURITAN AVE	M-39	14.83	14.5
S05	82193	6 MI RD	M-39	14.57	14.5
S06	82193	OUTER DRIVE	M-39	14.73	14.5
S07	82193	CURTIS AVE	M-39	14.73	14.5
S08	82193	7 MI RD	M-39	14.67	14.5
S09	82193	PEMBROKE AVE	M-39	13.65	14.5
S10	82193	M-102 LEFT TURN RA	M-39	14.73	14.5
S11	82193	M-102 EB	M-39	15.06	14.5
S11	82193	M-102 WB	M-39	15.06	14.5
P01	82194	SOLVAY AVE WALKOVE	1-75	16.14	17
P02	82194	BEARD AVE WALKOVER	1-75	16.08	17
P03	82194	CASGRAIN AV WALKOV	1-75	16.14	17
P04	82194	CALVARY ST WALKOVE	1-75	15.91	17
P05	82194	FERDINAND AVE WALK	$1-75$	16.31	17
P06	82194	HUBBARD ST WALKOVE	$1-75$	14.90	17
P07	82194	17TH ST WALKOVER	$1-75$	15.32	17
P08	82194	GILROY ST WALKOVER	1-75	15.06	17
S01	82194	CICOTTE AVE	1-75	14.99	14.5
S02	82194	$1-75$ NB	OUTER DRIVE	14.67	14.5
S02	82194	$1-75$ SB	OUTER DRIVE	14.67	14.5
S05	82194	1 -75	M-85 (FORT ST)	14.83	14.5
S07	82194	SPRINGWELL AVE	1-75	15.58	14.5
S08	82194	GREEN AVE	1-75	16.73	14.5
S09	82194	WATERMAN AVE	$1-75$	14.50	14.5
S10	82194	LIVERNOIS AVE	1-75	14.90	14.5
S11	82194	JUNCTION AVE	1-75	14.67	14.5
S12	82194	CLARK AVE	1-75	15.16	14.5
S13	82194	W GRAND BLVD SB	1-75	14.50	14.5
S14	82194	LAFAYETTE BLVD	$1-75$	13.98	14.5
S15	82194	PORTER ST	$1-75$	13.98	14.5
S16	82194	PORTER ST NB RAMPS	$1-75$	14.24	14.5
S16	82194	PORTER ST SB RAMPS	$1-75$	14.24	14.5
S17	82194	VERNOR AVE	1-75	14.30	14.5
S18	82194	$1-75$ SB	1-96WB	14.83	14.5
S19	82194	US-12	1 -75 NB	14.50	14.5
S20	82194	US-12	$1-75$ SB	14.30	14.5
S21	82194	DRAGOON AVE	$1-75$	15.49	14.5
S22	82194	I-75 RAMP WB TO SB	RAMP TO WB I-96	14.57	14.5
S23	82194	W GRAND BLVD NB	1-75	14.50	14.5
S24	82194	US-12	1-96	14.57	14.5
S25	82194	US-12 EB CONN	$1-75$ NB	14.73	14.5
S26	82194	RMP I-96E TO I-75N	1 -75 SB	14.73	14.5
S27	82194	US-12 EB CONN	1-96 NB	14.57	14.5
S28	82194	TRUCK TOLLS TO AMB	1-75/1-96	\#N/A	14.5
$\times 01$	82194	CONRAIL	1-75	13.98	14.5
$\times 02$	82194	CPR-CONRAIL	W BD SERV RD\& \|-75/I-96	\#N/A	14.5

Previously Exempted Highly Urbanized Routes					
				Underclearance in Ft.	
Structure Number	Control Section	Structure Carry Traffic On	Structure over	Existing	Required
P01	82195	MARKET ST WALKOVER	M-3 CONN TO 1-75	14.67	17
P02	82195	COCHRAN AV WALKOVE	1-75	14.30	17
S01	82195	14 TH ST	1-75	15.16	14.5
S02	82195	12 TH ST	1-75	15.49	14.5
S03	82195	ROSA PARKS ENT RMP	1 -75 S COLLECTOR-DIST RD	14.99	14.5
S04	82195	ROSA PARKS EXT RMP	1 I-75 N COLLECTOR-DIST RD	15.49	14.5
S05	82195	TRUMBULL AVE	1-75	14.57	14.5
S06	82195	M-10 SB TO EB RAMP	1-75 \& RAMP TO SB	13.98	14.5
S08	82195	1-75 E-N RAMP	M-10	14.57	14.5
S09	82195	M-10S TO I-75E RMP	M-10	18.31	14.5
S11	82195	$1-75$ NB	M-10	16.50	14.5
S11	82195	$1-75$ SB	M-10	16.50	14.5
S12	82195	M-10N TO I-75S RMP	M-10	20.31	14.5
S13	82195	1-75 W S RAMP	M-10	15.42	14.5
S15	82195	M-10 N-W RAMP	$1-75$ \& EXIT RAMPS	14.27	14.5
S17	82195	$1-75$ SB ENT RMP	$1-75$ NB ENT RAMP	15.06	14.5
S18	82195	THIRD AVE	1-75	15.06	14.5
S19	82195	GRAND RIV AVE(M-5)	$1-75$	14.83	14.5
S20	82195	SECOND BLVD	1-75	14.90	14.5
S23	82195	CASS AVE	1-75	15.32	14.5
S24	82195	CLIFFORD ST	$1-75$	14.50	14.5
S25	82195	M-1 WOODWARD AV	1-75	14.57	14.5
S26	82195	JOHN R	1-75	15.58	14.5
S27	82195	BRUSH ST	1-75	14.83	14.5
P02	82251	DIVISION AVE WALKO	1-75	14.99	17
P03	82251	LELAND ST WALKOVER	$1-75$	14.30	17
S01	82251	M-3 (GRATIOT AVE)	1-375	14.50	14.5
S02	82251	MADISON AVE RAMPS	1-375	14.50	14.5
S03	82251	1 -75 E N TURN RD	1-375	15.16	14.5
S04	82251	$1-75$ S E TURN RD	1-375	15.22	14.5
S05	82251	BRUSH ST ENT RAMP	$1-75$ EB -375 SB TRN RDY	14.14	14.5
S07	82251	$1-75$ NB	1-75 S.TO EB.RAMP	14.99	14.5
S07	82251	$1-75$ SB	1-75 S.TO EB.RAMP	14.99	14.5
S07	82251	BRUSH ST ENTR RMP	1-75 SB. TO EB. RAMP	14.99	14.5
S08	82251	M-3 CONN	1-75 \& \|-375	14.27	14.5
S08	82251	M-3 CONN	1-75 \& 1-375	14.27	14.5
S09	82251	M-3 EB CONN	1-375 \& 1-75 RAMP	15.16	14.5
S09	82251	M-3 WB CONN	$1-375$ \& 1-75 RAMP	15.16	14.5
S11	82251	1-375 N W TURN RD	$1-75$ \& RAMP	15.81	14.5
S12	82251	M-3 TO I-375 S RMP	1-75	15.91	14.5
S13	82251	WILKINS ST \& RAMP	$1-75$	14.57	14.5
S14	82251	MACK AVE	$1-75$	14.30	14.5
S15	82251	CANFIELD AVE	1-75	14.90	14.5
S16	82251	WARREN AVE	$1-75$	14.57	14.5
S17	82251	WARREN ENT TO 1-75	1-75 NB TO E\&W TUR.RDWY	14.83	14.5
S18	82251	1 -75 SB EXIT RAMP	I-75 E\&W TO SB.TUR.RDWY	14.24	14.5

Previously Exempted Highly Urbanized Routes					
				Underclearance in Ft.	
Structure Number	Control Section	Structure Carry Traffic On	Structure over	Existing	Required
S19	82251	FERRY AVE	1-75 W TO S.TURN.RDWY	14.99	14.5
S20	82251	FERRY AVE	1-75 \& TURN.RDWY	14.57	14.5
S21	82251	1-94 EB ENT RAMP	1-75 RAMP TO I-94	14.30	14.5
S22	82251	I-94 W-S RAMP	I-94EB TO I-75NB RAMP	15.81	14.5
S23	82251	$1-94 E B-I-75 N B ~ R A M P ~$	1-75	18.14	14.5
S24	82251	1-94 W-S RAMP	1-94	16.31	14.5
S25	82251	1-75N-194W RAMP	$1-75$ \& RAMP	29.99	14.5
S26	82251	1-75N-I94E RAMP	RUSSELL ST CONN	21.06	14.5
S27	82251	1-94	$1-75$	14.50	14.5
S28	82251	1 -75 S-W RAMP	NORTH SERVICE RD	14.73	14.5
S29	82251	1-94 W-S RAMP	1-75 \& RAMP	14.50	14.5
S30	82251	1-75S-194E RAMP	1-94	19.98	14.5
S30	82251	$1-75$ S-E RAMP	$1-75$ SB	19.98	14.5
P03	82252	GREENDALE AVE WALK	$1-75$	15.33	17
P05	82252	LANTZ AVE WALKOVER	$1-75$	15.65	17
P09	82252	PHILADELPHIA AV WA	$1-75$	15.65	17
R11	82252	DAVISON TO I-75 RP	GTWRR,1-75\&DAVISON(M-8)	15.98	$\begin{aligned} & 14.5 \mathrm{Rd} \\ & 23.0 \mathrm{RR} \end{aligned}$
S01	82252	PIQUETTE	1-75	14.40	14.5
S02	82252	MILWAUKEE AVE	$1-75$	18.73	14.5
S03	82252	E GRAND BLVD	$1-75$	14.50	14.5
S04	82252	CLAY AVE	1-75	14.57	14.5
S05	82252	HOLBROOK AVE	$1-75$	15.58	14.5
S06	82252	7 MI RD NB LEFT TU	$1-75$	14.00	14.5
S07	82252	7 MI RD	$1-75$	15.32	14.5
S08	82252	7MI RD SB LEFT TUR	1-75	15.42	14.5
S09	82252	STATE FAIR AVE	1-75	15.42	14.5
S10	82252	M-102 (8 MI RD)	$1-75$	15.06	14.5
S10	82252	M-102 EB SERV RD	1-75	15.06	14.5
S10	82252	M-102 WB SERV RD	$1-75$	15.06	14.5
S11	82252	DEQUINDRE AVE	$1-75$	16.40	14.5
S12	82252	CANIFF AVE \& TURN	$1-75$	15.32	14.5
S13	82252	COMMER AVE	1-75	14.90	14.5
S14	82252	CARPENTER AVE	1-75	15.06	14.5
S23	82252	NEVADA AVE	$1-75$	14.90	14.5
S24	82252	OAKLAND AVE	1-75	14.57	14.5
S25	82252	1-75N RMP WINCHEST	$1-75$	14.67	14.5
S26	82252	DEQUINDRE U-TURN	$1-75$	17.06	14.5
S27	82252	MEADE ST	1-75	14.99	14.5
S28	82252	1-75	RAMP TO DAVISON(M-8)	14.50	14.5
S29	82252	DEQUINDRE	I-75 RAMP TO DAVISON	14.83	14.5
S30	82252	DAVISON S SERV RD	$1-75$ RAMP C	15.65	14.5
S31	82252	1-75 \& RAMPS C\&D	DAVISON \& SERV.RDS.	14.73	14.5
S33	82252	DAVISON RAMP(M-8)	1-75	21.82	14.5
S34	82252	DEQUINDRE AVE	DAVISON (M-8)	14.73	14.5
S36	82252	$1-75$	RAMP D TO DAVISON(M-8)	14.40	14.5

Previously Exempted Highly Urbanized Routes					
				Underclearance in Ft.	
Structure Number	Control Section	Structure Carry Traffic On	Structure over	Existing	Required
X03	82252	CR RR	$1-75$	16.08	14.5
X04	82252	NS RR	$1-75$	17.42	14.5
X05	82252	CONRAIL \& GTW RR	$1-75$	16.99	14.5
X06	82252	GTW RR	$1-75$	15.22	14.5
X13	82252	GTW RR	DAVISON (M-8)	14.73	14.5
X14	82252	GTW RR	1-75 RAMP	14.73	14.5
X14	82252	GTW RR	1-75 RAMP	14.73	14.5
S03	82271	US-24-I-75 CONN SB	US-24NB	14.67	14.5

Bridges on 16 ft Routes in Highly Urban Areas

		(\&	Underclearance in Ft.	
Structure Number	Control Section	Structure Carry Traffic On	Structure over	Existing	Required
		Muskegon			
S03	61012	US-31 SB	M-120	14.40	16
S04	61012	US-31 NB	M-120	14.40	16
S01	61075	MARQUETTE RD	US-31	14.63	16
S02-5	61075	NB RAMP TO WB BR	US-31 SB\&US-31 BR EB(TOP	14.90	16
S01	61072	SHETTLER RD	US-31	15.58	16
S02	61072	BROADWAY ST	US-31	15.94	16
S03	61072	SHERMAN RD	US-31	15.98	16
$\times 01$	61072	MI SHORE RR	US-31	14.86	16
S03	61152	US-31	1-96	14.63	16
S01	61074	PONTALUNA	US-31	14.70	16
S03	61074	HILE RD	US-31	15.42	16
S01	61151	BROADWAY AVE	1-96 BS	14.57	16
$\times 03$	61151	MI SHORE	1-96 BS	14.99	16
$\times 02$	61151	CSX RR	1-96 BS	14.67	16
S02	61074	STERNBERG RD	US-31	16.80	16
S08	61152	FRUITPORT RD	1-96	16.63	16
S05	61152	STERNBERG RD	1-96	16.24	16
		Holland			
S01	70013	US-31	1-196 BL	14.83	16
S01	3034	1-196 WB	US-31NB	15.58	16
S02	3035	60 TH STREET	1-196	16.50	16
S04	3035	58 TH STREET	1-196	16.08	16
S06	3035	M-40	1-196	16.08	16
S07	3035	146 TH AVE	1-196	16.08	16
S05	3035	56 TH STREET	\|-196	15.91	16
S01	70024	ADAMS RD	\|-196	15.72	16
S04	0	I-196 EB	1-196 BL(BYRON ROAD)	15.09	16
S15	0	I-196 WB	I-196BL (BYRON RD)	14.67	16
S03	70024	88TH AVE.	1-196	16.37	16
		Benton Harbor			
S14	11015	LIVINGSTON ROAD	1-94	16.77	16
R06	11015	MI \& IN ELEC ROAD	1-94	24.84	23
X06-7	11015	MI \& IN ELEC CO RR	1-94	24.80	16
R06	11015	MI \& IN ELEC ROAD	1-94	24.84	23
S15	11015	JOHN BEERS ROAD	1-94	16.40	16
S17-3	11012	1-94 EB	I-94 BL (LAKESHORE DR)	14.50	16
S17-4	11012	1-94 WB	I-94 BL (LAKESHORE DR)	14.50	16
S18	11015	GLENLORD ROAD	1-94	17.09	16
S19	11015	CLEVELAND AVE	1-94	16.93	16

Bridges on 16 ft Routes in Highly Urban Areas					
				Underclearance in Ft.	
Structure Number	Control Section	Structure Carry Traffic On	Structure over	Existing	Required
S20	11015	WASHINGTON AVE	1-94	16.57	16
S22	11015	M-63	1-94	17.09	16
S01-3	11031	1-94 EB	US-31 \& M-139	15.91	16
S01-4	11031	1-94 WB	US-31 \& M-139	14.93	16
S02	11016	NICKERSON AVE	1-94	16.44	16
S04	11016	NAPIER ROAD	1-94	16.24	16
S05	11016	EMPIRE ROAD	1-94	15.03	16
S06	11016	BRITAIN RD	1-94	14.96	16
S07	11016	HIGHLAND ROAD	1-94	17.09	16
S09	11016	TERRITORIAL ROAD	1-94	17.19	16
S10	11016	BENTON CENTER ROAD	1-94	16.44	16
S08	11017	I-94 BL EB (MAIN)	1-94	17.03	16
		Niles			
S01-3	11051	US-12 EB	M-51	13.91	16
S01-4	11051	US-12 WB	M-51	13.91	16
S01	11057	BUCHANAN ROAD	US-31	17.42	16
		Kalamazoo			
S01	39013	CENTRE AVE (Q AVE)	US-131	14.63	16
S03	39013	MILHAM RD (O AVE)	US-131	17.03	16
S07-3	39014	1-94 EB \& CD RAMP	US-131 SB	14.67	16
S08-3	39013	1-94 EB \& CD RAMP	US-131 NB	14.67	16
S07-4	39013	1-94 WB	US-131 SB	14.67	16
S08-4	39013	1-94 WB	US-131 NB	14.76	16
S01	39014	PARKVIEW (M AVE)	US-131	16.40	16
S03	39014	I-94 BL (STADIUM)	US-131	14.70	16
S05	39014	MICHIGAN AVE	US-131	16.24	16
S06	39014	M-43 (MAIN STREET)	US-131	14.93	16
S07	39014	H AVE	US-131	14.99	16
S01	39024	4 TH STREET	1-94	15.91	16
S02	39024	6 TH STREET	1-94	17.32	16
S03	39024	9 TH STREET	1-94	16.67	16
S09	39024	OAKLAND DRIVE	1-94	15.58	16
S02	39022	LOVERS LANE	1-94	14.24	16
S11	39022	KILGORE ROAD	1-94	17.32	16
S04	39022	SPRINKLE ROAD	1-94	15.91	16
S05	39022	MILLER RD (L AVE)	1-94	14.76	16
S10	39022	CORK STREET	1-94	17.16	16
S06	39022	1-94 BL EB	$1-94$	16.08	16
$\times 01$	39082	NORFOLK SOUTHERN	M-43 (E MICH AVE)	14.24	16
S01	39042	SPRINKLE ROAD	M-96 (KING HIGHWAY)	16.24	16
		Battle Creek			

Bridges on 16 ft Routes in Highly Urban Areas					
				Underclearance in Ft.	
Structure Number	Control Section	Structure Carry Traffic On	Structure over	Existing	Required
S08	13062	I-194	1-94 BL (DICKMAN ROAD)	26.57	16
S01	0	M-96 (COLUMBIA)	RAYMOND RD	15.16	16
S02	13081	RENTON ROAD	1-94	18.67	16
S01	13081	1-94 BL (MLK)	1-94	16.50	16
S03	13081	HELMER ROAD	1-94	16.50	16
S04	13081	CAPITAL AVE	1-94	15.42	16
S06-2	13081	I-194 \& M-66 SB	1-94	15.49	16
S06-1	13081	1-194 \& M-66 NB	1-94	17.32	16
S02-3	13017	1-94 EB	BEADLE LAKE ROAD	15.58	16
$\times 01$	13082	NORFOLK SOUTHERN	1-94	15.75	16
S04	13082	F DRIVE NORTH	1-94	19.98	16
S05	13082	I-94 BL (MICHIGAN)	1-94	18.57	16
S06	13082	M-311(11 MILE RD)	1-94	17.49	16
		Jackson			
S02	38131	M-50 NB	US-127	14.34	16
S04	38131	VAN HORN RD	US-127	14.76	16
S05	38131	HENRY RD	US-127	15.16	16
S04	38101	BLACKMAN RD	1-94	14.57	16
S02-4	38101	M-60 WB	1-94	14.67	16
S02-3	38101	M-60 EB	1-94	14.76	16
S05	38101	AIRPORT RD	1-94	14.40	16
S06	38131	1-94	US-127 \& M-50	14.17	16
S07	38101	LANSING RD	1-94	14.07	16
S08-1	38101	M-106 NB	1-94	14.01	16
S09	38101	ELM RD	1-94	14.30	16
S10	38101	DETTMAN RD	1-94	14.67	16
S05-2	38101	US-127 SB	1-94	14.30	16
S05-1	38101	US-127 NB	1-94	14.90	16
S11	38101	HAWKINS RD	1-94	14.37	16
S12	38083	1-94	1-94BL SB	14.34	16
S01	38103	SARGENT RD	1-94	16.99	16
S04-2	0	US-127 SB	1-94BL	14.34	16
S04-1		US-127 NB	1-94BL	16.93	16
S02	38111	E SOUTH ST	US-127	16.50	16
S03	38111	PAGE RD	US-127	16.17	16
R01-1	0	US-127 NB	CONRAIL \& M-50	14.76	$\begin{aligned} & 16 \mathrm{RD} \\ & 23 \mathrm{RR} \end{aligned}$
R01-2		US-127 SB	CONRAIL \& M-50	16.24	$\begin{aligned} & 16 \mathrm{RD} \\ & 23 \mathrm{RR} \end{aligned}$
S01	38111	M-50	US-127	15.58	16
R01-4	38102	M-60 WB	CONRAIL \& $1-94$ BL	23.82	$\begin{aligned} & 16 \mathrm{RD} \\ & 23 \mathrm{RR} \end{aligned}$
R01-3	38102	M-60 EB	CONRAIL \& I-94 BL	23.33	$\begin{aligned} & 16 \mathrm{RD} \\ & 23 \mathrm{RR} \end{aligned}$

Bridges on 16 ft Routes in Highly Urban Areas

				Underclearance in Ft.	
Structure Number	Control Section	Structure Carry Traffic On	Structure over	Existing	Required
		Grand Rapids			
S01	41133	INDIAN LAKE RD	US-131 SB	16.50	16
S02	41133	INDIAN LAKE RD	US-131 NB	16.50	16
S03	41133	M-46	US-131	16.47	16
S06	41132	POST RD	US-131	14.80	16
S09	41132	12 MI RD	US-131	15.12	16
S13	41132	14 MI RD (M-57)	US-131	15.09	16
S05	41132	PINE ISLAND DRIVE	US-131	16.27	16
S08	41132	10 MI RD	US-131	16.34	16
S07	70063	16TH AVE	1-96	14.57	16
S08	70062	1-96 EB	M-11 WB	14.40	16
S01	41026	FRUIT RIDGE RD	$1-96$	16.50	16
S02	41026	WALKER AVE	1-96	16.40	16
S04	41026	M-37	I-96EB,M-37	16.24	16
S06	41026	WB 1-296 CONN	I-96EB \& M-37	16.63	16
R03	41132	1-296 CONN TO WB96	CSX \& CR RR \& US-131 SB	17.16	$\begin{aligned} & 16 \mathrm{Rd} \\ & 23 \mathrm{RR} \end{aligned}$
S07-3	41132	1-96 EB	US-131	16.24	16
S07-4	41132	1-96 WB	US-131	18.24	16
S03	41025	CHENEY AVE	1-96	16.17	16
S04	41025	M-44 CONN	1-96	17.26	16
S05	41025	DEAN LAKE AVE.	1-96	15.35	16
S07	41025	KNAPP STREET	$1-96$	16.40	16
S10	41025	M-44 (EAST BELT LI	$1-96$	16.34	16
S09	41025	1-96 EB	1-196 WB \& M-21	16.34	16
S08	41025	LEONARD ST	1-96	16.70	16
P01	41051	CALVIN COLLEGE PED	M-37 (E BELT LINE AVE)	17.59	17
S01	41031	32ND ST	M-37	28.31	16
X01	41031	CSXRR	M-37	16.01	16
S30	0	60TH STREET	M-6	16.99	16
S28	41031	M-6 WB	M-37	17.85	16
S27	41031	M-6 EB	M-37	18.24	16
S25	41064	EAST PARIS AVE	M-6	16.50	16
S26	41064	PATTERSON AVENUE	M-6	17.42	16
S11	41025	M-21 WB	1-96 EB RAMP	14.40	16
S16	41025	BURTON STREET	1-96	16.17	16
S15	41025	FOREST HILL AVENUE	1-96	16.24	16
S14	41025	CASCADE RD	1-96	16.17	16
S13	41025	M-21 EB	1-96 \& M-21	17.13	16
S12	41025	M-21 WB	1-96 \& M-21	17.32	16
S01-4	41063	1-96WB	M-11	14.76	16
S01-3	41063	1-96EB	M-11	16.57	16
S02	41024	KRAFT AVE.	1-96	16.40	16
S03	41024	THORNAPPLE R DR	1-96	16.17	16
S35	41025	M-6 EB TO 1-96 WB	$1-96$	17.85	16

Bridges on 16 ft Routes in Highly Urban Areas					
				Underclearance in Ft.	
Structure Number	Control Section	Structure Carry Traffic On	Structure over	Existing	Required
B03	41024	M-6, RAMP A	I-96 \& THORNAPPLE RIVER	16.77	16
B03	41024	M-6, RAMP A	I-96 \& THORNAPPLE RIVER	16.77	16
S04	41024	WHITNEYVILLE AVE.	1-96	14.83	16
S36	41064	M-6 EB TO I-96 WB	I-96 WB TO M-6 WB RAMP D	16.50	16
S17	41131	M-6 EB	US-131	16.40	16
S15	41131	M-6 WB C-D	US-131	16.40	16
S14	41031	M-6 EB C-D	US-131	16.40	16
S16	41031	M-6 WB	US-131	16.40	16
S01	41064	KENOWA AVE	M-6	16.40	16
S02	41064	WILSON AVE	M-6, RAMP G	16.40	16
S03	41064	IVANREST AVE	M-6	16.83	16
S04	41064	BYRON CENTER AVE	M-6, RAMPS E \& G	17.42	16
S05	41064	BURLINGAME AVE	M-6	16.57	16
B03	70025	8TH AVE	M-6, RUSH CREEK	12.66	16
S02	41043	M-6 EB, RAMP D	M-6 WB, RAMP C	17.42	16
S03	41043	1-196 WB TO M-6 EB	1-196 EB	19.65	16
S01	41034	M-6 WB, RAMP C	1-196 EB	18.33	16
S13	70024	8TH AVE	1-196	16.14	16
S20	41029	KENOWA AVE	1-196	16.67	16
S22	41029	44TH ST	1-196	16.54	16
R01	0	1-196 EB M-21	CSX RR \& I-196 RMP	16.77	$\begin{array}{\|cc\|} \hline 16 \mathrm{RD} \\ R R \end{array}$
S03	41061	$1-196 \mathrm{WB}$	M-11	14.83	16
S04	41061	1-196 EB	M-11	15.49	16
S05	41029	1-196WB RAMP TOM11	I-196EB	16.34	16
S06	41029	RMP B M-21BR I-196	1-196 EB	16.04	16
S10	41029	RAMP OVER WB I-196	1-196 WB	18.50	16
S11	41029	M-45 LAKE MICH DR	I-196 WB	17.81	16
S07	41842	I-196 RAMP A M-21	M-21BR (CHICAGO DR)	15.91	16
S13	41081	1-196 EB	M-45EB RAMP TO I-196WB	29.43	16
S12	41081	1-196 EB	M-45	15.49	16
		Lansing			
S06	19042	WEBSTER RD	1-69	16.70	16
S11	19042	UPTON RD	1-69	16.70	16
S09	19041	1-69BR EB RAMP D	1-69	16.40	16
S10	19041	I-69BR WB RAMP C	1-69	16.40	16
S07	19042	NICHOLS RD	1-69	16.37	16
S07	19042	NICHOLS RD	1-69	16.37	16
S08	19042	CENTER RD	1-69	16.67	16
S06	19042	WEBSTER RD	1-69	16.70	16
S03	19042	I-69 EB C-D	US-127	17.78	16
S01	19033	CLARK ROAD	US-127	16.40	16
S08	19043	CLARK RD	1-69	16.40	16
S11	19043	LOWELL RD	1-69	16.50	16
S10	19043	AIRPORT ROAD	1-69	16.67	16

Bridges on 16 ft Routes in Highly Urban Areas					
				Underclearance in Ft.	
Structure Number	Control Section	Structure Carry Traffic On	Structure over	Existing	Required
S02	19043	CLARK RD	1-69 \& US-127	17.26	16
S07	19043	DEWITT RD	1-69	16.57	16
S05	19043	US-127 BR	\|-69	16.77	16
S05	19043	US-127 BR	1-69	16.77	16
S17	19043	FRANCIS ROAD	EB \& WB TURNING RD	16.34	16
S12	19021	1-69 SB	EB TURNING ROADWAY	16.40	16
S13	19021	1-69 NB	EB TURNING ROADWAY	16.57	16
S19	19022	EB TURNING RDWY	1-96	16.77	16
S16	19022	1-69 SB	1-96	16.34	16
S06-4	19022	1-96 WB	1-96BL	19.00	16
S06-3	19022	I-96 EB	I-96BL	14.99	16
S14	19021	1-69 SB	GRAND RIVER AVE (1-96BL)	14.99	16
S15	19021	1-69 NB	GRAND RIVER AVE (1-96BL)	14.99	16
S13	23152	EATON HWY	1-69 EB \& 1-96 WB	16.47	16
S14	23152	EATON HWY	$1-69$ WB \& 96 EB	16.47	16
S02-3	23152	1-96 EB	M-43	16.14	16
S02-4	23152	1-96 WB	M-43	16.01	16
S01	23152	WILLOW HWY	1-96	16.67	16
S02	23152	1-496 WB	1-96	16.24	16
S05	23152	MT HOPE HWY	1-96 \& 1-496 RAMP	16.27	16
S05	23152	MT HOPE HWY	1-96 \& 1-496 RAMP	16.27	16
S16	23152	MILLET ROAD	1-69 NB	16.57	16
S06	23152	MILLETT RD	1-96	16.70	16
S14	23152	I-69 NB	1-96	16.40	16
S15	23152	1-69 SB	1-96	16.67	16
S09	23152	1-96 WB	LANSING RD	17.42	16
S13	23063	DAVIS HWY	1-69	16.67	16
S01	23151	CREYTS RD	1-96 EB	15.58	16
S02	23151	CREYTS RD	$1-96$ WB	15.98	16
S03	23151	WAVERLY RD	1-96	16.24	16
S01-4	33011	1-96 WB	M-99	15.16	16
S01-3	33011	1-96 EB	M-99	16.93	16
S04-3	33081	1-96 EB	1-96BL RAMPS	14.67	16
S04-4	33081	1-96 WB	1-96BL RAMPS	14.99	16
S01	33084	AURELIUS RD	1-96	16.24	16
		Metro Detroit Area			
S04	58171	NEWPORT RD	1-275	16.67	16
S01	82291	WILL CARLETON RD	1-275	16.67	16
S03	82291	SOUTH HURON	1-275	16.50	16
S02	82291	WILLOW RD	1-275	16.14	16
S04	82291	HURON R. DRIVE	1-275	16.40	16
S05	82291	SIBLEY RD	I-275	16.57	16
S06	82291	PENNSYLVANIA RD	1-275	16.50	16
S07	82291	EUREKA RD	1-275	16.57	16
X02	82291	NS RR	1-275	16.01	16

Bridges on 16ft Routes in Highly Urban Areas					
				Underclearance in Ft .	
Structure Number	Control Section	Structure Carry Traffic On	Structure over	Existing	Required
S18	82291	I-275 TO I-94 RAMP	1-275	16.57	16
S11	82291	1 1-94 EB	\|-275	18.67	16
S14-4	82291	1-94 WB	1-275	16.50	16
S14-8	82291	1-94 WB COLLECTOR	I-275	16.50	16
S11	82291	1 -94 EB	1-275	18.67	16
S14-4	82291	1-94 WB	1-275	16.50	16
S14-8	82291	1-94 WB COLLECTOR	1-275	16.50	16
S11	82291	1-94 EB	1-275	18.67	16
$\times 04$	82291	NS RR	1-275 EXIT RAMP F	16.24	16
S02	82292	TYLER RD.	1-275	16.83	16
S03	82292	ECORSE RD.	1-275	16.50	16
S06	82292	PALMER RD	1-275	16.50	16
S01	82292	HANNAN RD.	1-275	16.99	16
S05	0	1-275 SB	MICHIGAN AVE(US-12)	16.90	16
S11	0	I-275 NB	MICHIGAN AVE(US-12)	16.73	16
S09	0	I-275 SB	RELOC M-14	16.40	16
S10-1	0	I-275 NB	RELOC M-14	16.24	16
S10-5	0	I-275 NB COLLECTOR	RELOC M-14	17.65	16
S10-5	0	I-275 NB COLLECTOR	RELOC M-14	17.65	16
S08	0	I-275 SB	M-153 (FORD RD)	16.93	16
S15	0	I-275 NB	M-153 (FORD RD)	18.41	16
S01	82293	WARREN RD	1-275	18.57	16
S02	82293	JOY RD	1-275	16.67	16
S03	82293	ANN ARBOR RD	1-275	16.67	16
S04	82293	ANN ARBOR TRAIL	1-275	16.90	16
S06	82293	PLYMOUTH RD	1-275	16.14	16
S11	82293	SB TO EB I-96	I-275 NB	17.22	16
S12	82125	FIVE MI RD	1-96	17.06	16
S05	82125	SIX MILE RD	1-96	16.50	16
S03	82125	SEVEN MILE RD	1-96	15.98	16
S10	63191	TEN MILE RD	1-96	17.42	16
S09	63191	GRAND RIVER AVE	1-275, 1-96	16.93	16
S10	63191	TEN MILE RD	1-96	17.42	16
S09	63191	GRAND RIVER AVE	1-275, 1-96	16.93	16
S14	50062	BARKMAN AVE	1-696	17.16	16
S02	50062	GROVELAND AVE	1-696	17.55	16
S03-2	50062	SB GRATIOT AVE M-3	1-696	17.09	16
S03-1	50062	NB GRATIOT AVE M-3	1-696	17.06	16
S28	50062	M-97 GROESBECK HWY	1-696	17.91	16
S29	50062	HAYES RD	1-696	17.32	16
S13	50062	BELANGER AVE	1-696	17.16	16
P01	50062	GRANDMONT PED X-OV	1-696 \& SERVICE RDS	14.99	17
S18	50061	VAN DYKE AVE (M53)	1-696	19.42	16
S19	50061	LFT TRN LANE	1-696	16.93	16
S41	50061	ARSENAL AVE	1-696	16.73	16
S42	50061	CAMPBELL RD	1-696	16.99	16
S21	50061	LFT TRN LANE	1-696	17.16	16

Bridges on 16 ft Routes in Highly Urban Areas

				Underclearance in Ft.	
Structure Number	Control Section	Structure Carry Traffic On	Structure over	Existing	Required
S22	50061	HOOVER RD	1-696	18.34	16
S23	50061	LFT TRN LANE	1-696	17.49	16
S30	50061	WAGNER DR	1-696	16.83	16
S31	50061	FAIRFIELD AVE	1-696	16.83	16
S43	50061	SCHOENHERR LFT TRN	1-696	16.90	16
S25	50061	SCHOENHERR RD	1-696	16.77	16
S26	50061	BUNERT RD	1-696	16.83	16
X02	50061	GTW RR	1-696	16.01	16
$\times 01$	50061	CONRAIL	1-696	16.01	16
S17	50061	U-TRN \& LFT TRN	1-696	16.83	16
S14	50061	SHERWOOD AVE.	1-696 \& RAMPS B,C,H, \& F	16.34	16
S08	50061	RAMP G AT MOUND RD	1-696	26.15	16
S33-5	50061	N.BD. SERVICE RD.	1-696	16.24	16
S33-1	50061	N.BD.MOUND RD.	1-696	16.24	16
S33-6	50061	S.BD. SERVICE RD.	1-696	16.24	16
S33-2	50061	S.BD.MOUND RD.	1-696	16.24	16
S05	50061	EB 11 MILE RD	1-696	16.40	16
S03	50061	RYAN ST	1-696	16.57	16
S04	50061	MEREDITH DR	1-696	16.17	16
S44	50061	U TURN @ ELCAPITAN	1-696	17.09	16
S01	50061	U TURN @ AUGUSTINE	1-696	16.40	16
S02	50061	EB 11 MI RMP 1-696	1-696	16.67	16
S16	50061	EB 11 MILE RD	1-696	15.16	16
S06	50061	RAMP G AT MOUND RD	1-696	15.81	16
P01	50061	THOMAS ST PED X-OV	1-696	14.99	17
S10	63103	JOHN R RD	1-696	16.67	16
S11	63103	U-TURN @ BATTELLE	1-696	17.06	16
S12	63103	COUZENS ST	1-696	16.73	16
S13	63103	10 MI RD CONNECTOR	1-696	16.83	16
S14	63103	DEQUINDRE LFT TRN	1-696	16.50	16
S15	63103	DEQUINDRE AVE	1-696	16.31	16
S14	63102	US-24 N TO M-10 W	1-696	21.00	16
S03	63102	LASHER ROAD	1-696	16.57	16
S32	63102	LOIS LN	1-696	16.50	16
S04	63102	11 MILE ROAD	1-696	16.67	16
S33	63102	SERV.RD U-TURN	1-696	16.31	16
S34	63102	CENTRAL PARK BLVD	1-696	16.73	16
S35	63102	MEADOWLARK U EAST	1-696	17.16	16
S05	63102	EVERGREEN ROAD	1-696	19.59	16
S36	63102	RED RIVER AVE U-T	1-696	17.32	16
S06	63102	SANTA BARBARA	1-696	16.50	16
S38	63102	SANTA BARBARA U EA	1-696	16.50	16
S07	63102	SOUTHFIELD U TURN	1-696	17.75	16
S08	63102	SOUTHFIELD RD	1-696	20.31	16
S09	63102	SOUTHFIELD U TURN	1-696	16.57	16
S39	63102	LATHRUP ROAD	1-696	16.83	16
S11	63102	LINCOLN DRIVE	1-696	17.06	16

Bridges on 16ft Routes in Highly Urban Areas					
				Underclearance in Ft.	
Structure Number	Control Section	Structure Carry Traffic On	Structure over	Existing	Required
S12	63102	U-TURN W.OF GRNFLD	1-696	16.90	16
S13	63102	GREENFIELD ROAD	1-696	16.67	16
S14	63102	U-TURN E OF GRNFLD	1-696	16.40	16
S10	63102	E B 11 MILE SER RO	1-696	16.57	16
P01	63102	MEADOWOOD	1-696	16.50	16
Z02	63102	PLAZA	1-696	16.57	16
Z01	63102	PLAZA	1-696	17.42	16
Z03	63102	PLAZA	1-696	16.73	16
S16	63102	10 MILE ROAD W-SER	1-696	16.24	16
S17	63102	COOLIDGE ROAD U T	1-696	16.24	16
S18	63102	COOLIDGE ROAD	1-696	16.24	16
S19	63102	COOLIDGE ROAD U TU	1-696	16.24	16
S20	63102	SCOTIA ROAD	1-696	16.24	16
S40	63102	MANISTEE U-TURN	1-696	16.24	16
S41	63102	ROANOKE U-TURN	1-696	16.24	16
S42	63102	MAPLEFIELD U-TURN	1-696	16.24	16
S23	63102	WOODWARD U TURN W	1-696	16.67	16
S25	63102	SB WOODWARD SERV	1-696	17.55	16
S27	63102	NB WOODWARD SERV	1-696	18.67	16
S28	63102	MAIN STREET	1-696	16.99	16
$\times 01$	63102	GTW RR	1-696	17.81	16
S29	63102	MOHAWK AVENUE	1-696	16.24	16
S29-8	63102	MOHAWK AVENUE(UTN)	1-696	16.24	16
S31	63102	CAMPBELL AVE	1-696	16.24	16
S12	63101	RAMP P TO M-10	1-696	17.65	16
S13	63101	US-24,TELEGRAPH RD	1-696	16.57	16
S07	63101	ORCHARD LAKE RD	1-696	16.77	16
P02	63101	E OF ORCHARD LAKE	1-696	16.24	16
S08	63101	MIDDLEBELT RD	1-696	16.31	16
S10	63101	FRANKLIN RD	1-696	16.14	16
S11	63101	SB N WESTERN HWY	1-696	16.14	16
S02	63101	HAGGERTY RD	1-696	16.24	16
S05-4	63101	$1-96$ WB	1-696	16.50	16
S06	63101	TRN RDWY C (1-696)	1-96 \& M-275	16.24	16
S05-4	63101	$1-96$ WB	1-696	16.50	16
S05-1	63101	1-275 NB	1-696	17.16	16
S03	63101	HALSTEAD RD	1-696	16.24	16
S03	63101	HALSTEAD RD	1-696	16.24	16
S06	63101	FARMINGTON RD	1-696	16.34	16
S01	63101	M-5 (OLD M-102)	$1-696$ EB	16.99	16
S02	63022	M-5	1-96/1-696	16.93	16
S01	63191	MEADOWBROOK RD	1-96	16.57	16
S07	63022	NOVI RD	1-96	16.83	16
S03	63022	SOUTH HILL RD	1-96	16.08	16
S04	63022	OLD PLANK RD	1-96	16.50	16
S05	63022	WIXOM RD	1-96	14.76	16
S06	63022	BECK RD	1-96	14.90	16

Bridges on 16ft Routes in Highly Urban Areas					
				Underclearance in Ft.	
Structure Number	Control Section	Structure Carry Traffic On	Structure over	Existing	Required
S07	47064	PLEASANT VALLEY RD	1-96	15.06	16
S08	47064	KENSINGTON RD	1-96	15.12	16
S05	47013	GRAND RIVER AVE	US-23 SB	15.29	16
S03	47013	I-96 EB	US-23SB	14.67	16
S12	47065	SPENCER RD	1-96	17.49	16
S11	47065	FLINT RD	1-96	16.99	16
S08	47065	1-96 BL (ON RMP)	1-96 WB	16.40	16
S09	47065	DORR RD	1-96	16.27	16
S06	47065	PINCKNEY RD	1-96	16.50	16
S07	47065	CHILSON RD	1-96	16.50	16
S02	47065	M-59/I-96BL	1-96	16.40	16
S04	47065	M-155 (MASON RD)	1-96	16.67	16
S16-8	82291	1-94 WB COLLECTOR	I-275 SB TO I-94 EB RAMP	16.40	16
P01	82021	QUIRK ROAD WALKOVE	1-94	20.67	17
S01	82021	BELLEVILLE RD	1-94	16.93	16
S02	82021	HAGGERTY RD	1-94	16.99	16
P01	82021	QUIRK ROAD WALKOVE	1-94	20.67	17
S01	82021	BELLEVILLE RD	1-94	16.93	16
S02	82021	HAGGERTY RD	1-94	16.99	16
S01	81041	US-12 EB	1-94	17.16	16
S03	81041	RAWSONVILLE RD	1-94	16.67	16
S01	81063	US-12 BR,WHITTAKER	1-94	16.40	16
S02	81063	GROVE ST	1-94	16.40	16
P01	81063	GEORGINA DR WALKOV	1-94	17.39	17
S06	81063	HARRIS RD	1-94	17.55	16
S12	81062	US-12	1-94	16.24	16
S09	81062	CARPENTER RD	1-94	16.34	16
S08-1	81062	US-23 NB	1-94	17.59	16
S08-2	81062	US-23 SB RAMP	1-94	16.73	16
S13	81062	ELLSWORTH RD.	1-94	16.24	16
P02	81062	PLAINVIEW CT PED B	1-94	16.90	17
P01	81062	PED\&BIKE@STONE SCH	1-94	16.90	17
S04	81062	SALINE RD	1-94	16.90	16
S05	81062	102STATE RD	1-94	17.26	16
S07	81062	PLATT RD	1-94	14.50	16
S06	81062	STONE SCHOOL RD	1-94	14.17	16
S03	81062	SCIO CHURCH RD	1-94	14.40	16
S02	81062	LIBERTY RD	1-94	14.24	16
S01	81101	1-94	1-94 BL	14.17	16
S13	81104	JACKSON AV WB,94BR	1-94 RAMP	14.67	16
S08	81104	PARKER RD	1-94	19.19	16
S09	81104	BAKER RD	1-94	16.37	16
S10	81104	ZEEB RD	1-94	16.99	16
S11	81104	M-14 EB	1-94 WB	17.81	16
S12	81104	WAGNER RD	1-94	16.73	16
S04	47013	LEE RD	US-23	14.73	16
X03	47013	CSX RR	US-23	15.26	16

Bridges on 16 ft Routes in Highly Urban Areas					
				Underclearance in Ft.	
Structure Number	Control Section	Structure Carry Traffic On	Structure over	Existing	Required
S05	47013	GRAND RIVER AVE	US-23 SB	15.29	16
S03	47013	1-96 EB	US-23SB	14.67	16
S04	47013	1-96 WB	US-23SB	14.90	16
S06	47013	GRAND RIVER AVE	US-23 NB	15.16	16
S05	47013	1-96 EB	US-23NB	14.67	16
S02	47041	US-23	M-36	14.30	16
S05	81075	WARREN RD	US-23	14.67	16
S08	81075	6 MI RD	US-23	15.06	16
S10	81075	8 MI RD	US-23	14.17	16
S09-1	81103	23 BR N TO US-23 N	US-23 SB(RAMP C)	15.09	16
S02	81103	PONTIAC TRAIL	US-23 WB, M-14 WB	14.67	16
S01	81103	PONTIAC TRAIL	US-23 EB, M-14 EB	14.67	16
S04	81103	NIXON RD	US-23, M-14	16.63	16
S04	81074	GEDDES RD	US-23	14.60	16
S05	81074	EARHART RD	US-23	15.09	16
S06	81074	PLYMOUTH-ANNARBOR	US-23	14.96	16
S07	81074	ELLSWORTH RD	US-23	15.72	16
S02-2	81081	US-23 SB	US-23 BR	14.40	16
S07	81103	DIXBORO RD	M-14	15.42	16
S08	81103	VORHIES RD	M-14	16.93	16
S12-3	81103	M-153 CONN.RAMP C	M-14	16.99	16
S12-4	81103	M-153 CONN.RAMP B	M-14	16.57	16
S02	82102	NAPIER ROAD	M-14	17.22	16
S03	82102	N. TERRITORIAL RD	M-14	16.31	16
S04	82102	RIDGE ROAD	M-14	16.57	16
S05	82102	BECK ROAD	M-14	16.99	16
S10	82102	ROBINWOOD DR.	M-14	16.40	16
S11	82102	SCHOOLCRAFT CONN.	M-14	16.99	16
S01	82102	HAGGERTY ROAD	M-14	16.73	16
509	0	1-275 SB	RELOC M-14	16.40	16
S06	81076	US-12	US-23	14.80	16
S02	33035	MASON-HOWELL RD	US-127	14.99	16
S10	33035	M-36 EB	US-127	15.72	16
S01	33035	M-36 WB	US-127	15.72	16
S04	33035	HOLT RD	US-127	16.04	16
S02	33032	COLUMBIA RD	US-127	14.86	16
S03	33032	SITTS RD	US-127	14.80	16
S01	33032	KIPP RD	US-127	15.09	16
S03	63192	1-96, RAMP J	M-5 NB	18.67	16
S01	63052	ORCHARD LAKE RD	US-24	14.30	16
P01	63041	PED O PASS	HURON M-59	15.49	17
$\times 02$	63041	C\&O RR	M-59 WB	14.01	16
P02	63041	PED O PASS	HURON M-59	16.14	17
S08-3	63112	1-75 CONN EB	M-24	14.67	16
S08-4	63112	1-75 CONN WB	M-24	14.67	16
S06	63174	DALLAS DBL U TURN	1 1-75	15.98	16
S30	63174	10.5 MI ROAD	1-75	16.73	16

Bridges on 16 ft Routes in Highly Urban Areas					
				Underclearance in Ft.	
Structure Number	Control Section	Structure Carry Traffic On	Structure over	Existing	Required
S31	63174	11 MI RD	1-75	15.98	16
S01	63174	GARDENIA RD	1-75	15.98	16
S02	63174	NB SERV RD	1-75	16.99	16
P01	63174	12 MI RD WALKOVER	1-75	16.99	17
S06-2	63632	1-75 SB	M-150 (ROCHESTER RD.)	14.50	16
S06-1	63632	1-75 NB	M-150 (ROCHESTER RD)	15.06	16
S10	63174	WATTLES RD	1-75	15.32	16
P07	63174	WATTLES RD PED	1-75	17.22	16
S13	63174	N.B. CROOKS RD.	$1-75$	16.50	16
S12	63174	RAMP CONNTO CHRYSL	1-75	16.40	16
S17	63174	1-696 TURN RDWY AF	1-696\&RAMPS FROM 1-75 SB	16.40	16
S18	63174	1-696 RAMP EB	1-75 \& RAMPS TO 1-75 NB	16.24	16
S19	63174	SOUTH BLVD	1-75	16.40	16
S20-2	63042	$1-75$ SB	OLD M-59 (AUBURN RD)	14.57	16
S20-1	63042	1-75 NB	OLD M-59 (AUBURN RD)	14.73	16
S01-2	63043	1-75 SB	M-59	15.42	16
S01-1	63043	1-75 NB	M-59	15.58	16
S02-4	63172	FEATHERSTONE RD	1-75	16.40	16
S02-3	63172	FEATHERSTONE RD	1-75	17.06	16
S18	63172	1-75 RAMP B	1-75 RAMP B \& 1-75	16.83	16
S03-4	63172	UNIVERSITY DR (WB)	1-75	328.05	16
S03-3	63172	UNIVERSITY DR (EB)	1-75	16.50	16
S05	63172	WALTON BLVD	1-75	16.40	16
S06-2	63112	$1-75$ SB	M-24 \& 1-75 BL	16.73	16
S06-1	63112	1-75 NB	M-24 \& 1-75 BL	16.73	16
S09	63172	GIDDINGS RD	1-75	19.55	16
S07-3	63172	M-24 CONN EB	$1-75$	16.60	16
S07-4	63172	M-24 CONN WB	1-75	16.60	16
S17	63172	M-15	1-75	16.24	16
S14	63172	SASHABAW RD	1-75	16.31	16
S13	63172	WALDON RD	1-75	16.40	16
S11	63172	N.BD. BALDWIN RD.	1-75	16.57	16
S02	63173	M-24	$1-75$ SB	16.08	16
S01	63173	HOLCOMB RD	1-75	16.08	16
S03	63054	$1-75$ NB	M-24	16.83	16
S04	63173	DAVISBURG RD	1-75	16.73	16
S05	63173	RATTALEE LAKE RD	$1-75$	16.90	16
S01	63173	HOLCOMB RD	1-75	16.08	16
S03	25131	HOLLY RD	1-75	16.50	16
S02	25131	BALDWIN RD	1-75	16.50	16
S10	25131	HILL RD	$1-75$	16.99	16
S09	25131	FENTON RD	1-75	16.67	16
S07	25131	GRAND BLANC RD	1-75	16.40	16
S01	25131	$1-475$ SB	$1-75$ NB	16.01	16
S12	25131	M-54 (DORT HWY)	$1-75$ S B	16.04	16
S11	25031	MILLER RD	$1-75$	14.47	16
S08	25031	MAPLE RD	1-75	14.73	16

Bridges on 16ft Routes in Highly Urban Areas					
				Underclearance in Ft.	
Structure Number	Control Section	Structure Carry Traffic On	Structure over	Existing	Required
X02	25031	GTW RR	1-75	14.01	16
S13	25032	DODGE RD	1-75	16.08	16
S12-8	25032	I-69 RAMP F	1-75	16.34	16
S12-4	25032	I-69 WB	1-75	16.31	16
S12-3	25032	1-69 EB	1-75	16.50	16
S12-7	25032	I-69 RAMP E	1-75	16.40	16
P01	25032	HOGARTH ST WALKOER	1-75	16.08	17
S01	25032	ARLENE DRIVE	1-75	16.21	16
X01	25032	GTWRR	$1-75$	14.83	16
S02	25032	M 21	$1-75$	14.17	16
S04	25032	BEECHER RD	1-75	17.81	16
S07	25032	PASADENA AVE	1-75	14.80	16
S08	25032	PIERSON RD	1-75	17.32	16
S09	25032	CARPENTER RD	1-75	14.37	16
S10	25032	COLDWATER RD	1-75	14.07	16
S44	25031	1-475 RAMP B	$1-75$ NB \& SB	18.24	16
S11	25032	STANLEY RD	$1-75$	16.08	16
S12	25032	MT MORRIS RD	1-75	16.08	16
S13	25032	DODGE RD	1-75	16.08	16
S14	25032	WILSON RD	1-75	16.40	16
S15	25032	M-57 (VIENNA RD)	1-75	16.24	16
S16	25032	FARRAND RD	1-75	14.67	16
S02	73111	KING RD	1-75	16.40	16
S01	73111	BAKER RD	1-75	16.08	16
S03	73111	HESS RD	1-75	17.06	16
S04	73111	M-46	1-75	16.08	16
S24	73111	$1-675$ RAMP TO 1-75	$1-675$ \& 1-75	17.49	16
S02	73111	$1-675$ WB	1-75	16.08	16
S07	73111	WADSWORTH RD	1-75	16.08	16
S25	73111	$1-675$ SB RAMP/I-75	1-75	17.16	16
S08	73111	M-81,WASHINGTON ST	1-75	16.24	16
S18	73111	$1-675$ NB OVER I-75	1-75	16.83	16
S05	73111	JANES RD	1-75	15.98	16
S03	73112	CRANE RD	1-75	16.34	16
S02	73112	KOCHVILLE RD	1-75	16.24	16
S01	9034	AMELITH RD	1-75	16.50	16
S02-2	9034	M-84	1-75 SB	16.40	16
S02-1	9034	M-84	$1-75$ NB	16.24	16
S03	9034	HOTCHKISS RD	1-75	16.50	16
S04	9034	SALZBURG RD	1-75	16.31	16
S05-3	9034	US-10 EB	1-75	16.57	16
S05-4	9034	US-10 WB	1-75	16.57	16
S04	9035	WILDER RD	1-75	16.86	16
S02	9035	N UNION RD	1-75	16.50	16
S03	9033	$1-75$ SB	M-13 CONN	14.99	16
S01	25042	M-13	1-69	16.31	16
S02	25042	DUFFIELD RD	1-69	15.42	16

Bridges on 16 ft Routes in Highly Urban Areas					
				Underclearance in Ft.	
Structure Number	Control Section	Structure Carry Traffic On	Structure over	Existing	Required
S03	25042	NICHOLS RD	1-69	14.57	16
S04	25042	SEYMOUR RD	1-69	14.40	16
S05	25042	MORRISH RD	1-69	14.67	16
S10	25042	$1-75$ RAMP B	1-69	15.65	16
S11	25042	$1-75$ RAMP C	1-69	16.14	16
P01	25085	PED X-OVER@PARK DR	1-69	16.57	17
S03	25085	CHURCH ST	1-69	16.57	16
S04	25085	BEACH ST (OLDM-56)	1-69	16.67	16
S02	25085	GRAND TRAVERSE ST	1-69	15.42	16
S05	25085	SAGINAW ST	1-69	15.06	16
S01	25084	LAPEER RD	1-69	17.16	16
S03	25072	1-69	M-54 (DORT HWY)	15.06	16
S07	25084	BELSAY RD	1-69	15.49	16
P02	25084	PED @ ADAMS AVE	1-69	15.58	17
S09	25084	LAPEER RD	1-69	15.52	16
S12	25091	1-69 WB	M-15	15.16	16
S11	25084	OAK RD	1-69	16.67	16
505	25031	TORREY RD	US-23	14.40	16
S06	25031	GRAND BLANC RD	US-23	14.57	16
S11	25031	MILLER RD	1-75	14.47	16
R01-2	25031	US-23 SB	GTW RR \&US-23BR	14.07	16
R01-1	25031	US-23 NB	GTW RR \&US-23BR	14.17	16
S02	25031	LAHRING RD	US-23	14.34	16
S03	25031	THOMPSON RD	US-23	14.60	16
S07	25031	HILL RD	US-23	16.24	16
S01	25033	US-23 BR	US-23	17.09	16
S04	47014	CROUSE RD	US-23	14.96	16
S08	47014	WHITE LAKE RD	US-23	15.85	16
S03-2	47082	US-23 SB	M-59	14.34	16
S03-1	47082	US-23 NB	M-59	14.34	16
S01	47014	SPENCER RD	US-23	14.83	16
S04	47013	LEE RD	US-23	14.73	16
S24	77111	1-94/l-69 (WB)	EB 1-94/I-69 ON RAMP	14.53	16
S04	77023	MICHIGAN RD	1-69	13.85	16
S05	77023	MICHIGAN RD	1-69WB	14.57	16
S01	77023	WADHAMS RD	1-69	14.93	16
S02	77023	ALLEN RD	1-69	14.70	16
S03	77023	RANGE RD	1-69	14.67	16
S23	77111	RAMP D 194EBTO M21	1-69 EB	15.09	16
S07	50022	M-59 EB	M-53	16.24	16
S06	50022	M-59	M-53	16.24	16
S08	50013	21 MI RD	M-53	14.57	16
S09	50013	22 MI RD	M-53	14.57	16
S01	50013	23 MI RD	M-53	14.57	16
S03	50013	26 MI RD	M-53	14.57	16
S03	50015	28 MILE RD	M-53	0.00	16
S11	50015	33 MILE RD	M-53	328.05	16

Bridges on 16 ft Routes in Highly Urban Areas					
				Underclearance in Ft .	
Structure Number	Control Section	Structure Carry Traffic On	Structure over	Existing	Required
P01	73062	COUNTRY CLUB WALKO	M-46	14.50	17
$\times 01$	73062	CSX RR	M-46	14.01	16
S11	9101	THREE MILE RD	US-10	16.14	16
S21	77111	WATER ST	1-94	15.65	16
S17	77111	1-69 WB	1-94	17.26	16
S20	77111	SB I-94 RAMP TO	1-94	16.73	16
S16	77111	MICHIGAN RD	1-94	15.42	16
S01	77111	MEISNER RD	$1-94$	16.34	16
S11	77111	SMITH CREEK RD	1-94	16.40	16
S12	77111	RAVENSWOOD RD	1-94	16.34	16
S13	77111	RANGE RD	1-94	17.09	16
S15	77111	1-69 EB	1-94	17.65	16
S10-4	77031	1-94 WB	M-25	14.34	16
S10-3	77031	1-94 EB	M-25	14.67	16
S01	50112	M-3 \& M-29	1-94	16.24	16
S02	50112	M-19 NEW HAVEN RD	1-94	16.24	16
S03	50112	26 MI RD	I-94	16.40	16
S04	50112	CO LINE RD	1-94	16.34	16
S32	50111	M-59 (EB)	1-94	16.40	16
S33	50111	M-59 (WB)	1-94	16.77	16
S30	50111	21 MI RD	1-94	16.17	16
S31	50111	COTTON RD	1-94	16.34	16

LEGEND TO UNDERCLEARANCE MAPS

Yellow Already exempted trunkline NHS routes (14'-6")
Green Additional exempted trunkline NHS routes
Red Trunkline NHS 16' routes
Blue Local NHS 16' routes

The Michigan Department of Transportation Operating Instructions for Scoping of Road and Bridge Projects to meet the current AASHTO Vertical Clearance Standards

Michigan has many structures over its roadway systems that do not meet the current American Association of State Highway and Transportation Officials (AASHTO) standards for vertical clearance. This is primarily due to a significant portion of our highway system being constructed prior to 1960 when the AASHTO standard for vertical clearance was $14^{\prime}-0^{\prime \prime}$. The standard was revised in 1960 to $1^{\prime} 6^{\prime}-0^{\prime \prime}$ for freeway and arterial roadways. MDOT's current design guidelines call for $16^{\prime}-0^{\prime \prime}$ clearance on all NHS trunkline routes with the exception of the highly urbanized areas. The following procedure outlines the steps to follow when scoping road or bridge projects when the project limits include a structure that does not meet the current AASHTO vertical clearance requirement. Some areas have been designated as highly urbanized with an alternate route and have a vertical clearance requirement of $14^{\prime}-6$ '". These areas have been specifically identified and are provided along with the vertical clearance requirement table. Unless routes have been specifically identified they are not to be considered highly urbanized and must follow the listed vertical clearance requirement.

If the recommended alternative to meet vertical clearance results in capacity improvements, the project must be coordinated with the Project Planning Division of the Bureau of Transportation Planning. This assures that proper department prioritization of capacity improvements are maintained. Recommended alternatives to meet vertical clearance that increase the estimated project cost (to rehabilitate in kind) by $\$ 3$ Million Dollars or more must be coordinated with Statewide Planning Division of the Bureau of Transportation Planning to determine if alternate funding sources are available. A review is needed to determine whether a design exception should be pursued.

New Construction

Definition: New structures over the Interstate Freeway, Non Interstate Freeway and Arterials on the NHS shall be designed to meet the current AASHTO vertical clearance requirement of 16'$0^{\prime \prime}$ ($16^{\prime}-3$ " is desired to provide for future overlay of the road).

New structures over Collectors and Local Roads and Non-NHS Trunklines shall be designed to meet the current AASHTO vertical clearance requirement of $14^{\prime}-6^{\prime \prime}\left(4^{\prime}-9^{\prime \prime}\right.$ is desired to provide for future overlay of the road).

Bridge 4R Projects - Freeways \& Arterials

Definition: Bridge projects whose scope of work include deck replacement, superstructure replacement, widening with the addition of a through lane, or full structure replacement.

Structures programmed for 4 R work must be designed to meet the current AASHTO vertical
clearance requirement of $16^{\prime}-0^{\prime \prime}\left(16^{\prime}-3^{\prime \prime}\right.$ is desired for future overlay of the road). Scoping of projects must include a determination of the most effective means of obtaining the vertical clearance standard. A cost/benefit analysis to determine how best to achieve the standard, either in full or with incremental progress by obtaining part of the vertical clearance with the current project and the remainder with a future project must be completed. The analysis should include the alternatives of obtaining vertical clearance with the bridge project, a road project, or some combination of road and bridge work to meet the clearance requirements. In many cases it may not be possible to achieve the complete vertical clearance with the proposed bridge project. If the most efficient plan for meeting the vertical clearance requirement is incremental progress, a design exception is required. The design exception should be submitted as soon as possible, preferably prior to the submittal of the call for projects. This assures that the project with exception is approved prior to beginning design, minimizing the potential for redesign of the project.

The following is the minimum required information to be included in the vertical clearance analysis. This information will also be needed if a design exception is submitted.

1. Preliminary Grades for the bridge and approaches, the route under the structure, and ramps if appropriate.
2. Location of existing structure foundations related to the proposed grade changes
3. Evaluation of impacts on existing drainage.
4. Evaluation of any other deficient geometric feature.
5. Determination of ROW Needs
6. Impacts on Environment
7. Cost Estimates for alternatives to meet vertical clearance
8. Proposed time frame when the remainder of vertical clearance will be achieved (Ballpark figure)
9. Accident analysis where appropriate
10. Soils (cut and fill information) and Ground Water Information
11. Impact on Local Businesses and Residences
12. User costs, constructability, maintaining traffic scheme and maintenance cost should also be considered.

Road 4R Projects - Freeways

Definition: Road projects whose scope of work include complete removal and replacement of pavement, major alignment improvements, adding lanes for through traffic, new roads, or projects with intermittent grade lifts that leave less than 50% of the existing pavement in service.

Road 4 R projects on the Freeway system must be designed to meet the current AASHTO vertical clearance requirement of $16^{\prime}-0^{\prime \prime}\left(16^{\prime}-3^{\prime \prime}\right.$ is desired for future overlay of the road). Scoping of projects must include a determination of the most effective means of obtaining the vertical clearance standard. A cost/benefit analysis to determine how best to achieve the
standard, either in full or with incremental progress by obtaining part of the vertical clearance with the current project and the remainder with a future project must be completed. The analysis should include the alternatives of obtaining vertical clearance with the bridge project, a road project, or some combination of road and bridge work to meet the clearance requirements. In many cases it may not be possible to achieve the complete vertical clearance with the proposed road project. If the most efficient plan for meeting the vertical clearance requirement is incremental progress, a design exception is required. The design exception should be submitted as soon as possible, preferably prior to the submittal of the call for projects. This assures that the project with exception is approved prior to beginning design minimizing the potential for redesign of the project.

The minimum analysis requirements will be the same as identified for Bridge $4 R$ projects and must also be included with a design exception request.

Road 4R Projects - Arterials

Definition: Road projects whose scope of work include complete removal and replacement of pavement, major alignment improvements, adding lanes for through traffic, new roads, or projects with intermittent grade lifts that leave less than 50% of the existing pavement in service.

When doing 4 R road work on the Arterial system, where no work is scheduled for the bridges, the bridges are considered existing structures and can be retained if they meet the $14^{\prime}-6$ " vertical clearance standard, therefore no design exception is required (Reference AASHTO standards, 2001 green book Chapter VII, Vertical Clearance, pg. 451). The existing vertical clearance must be retained (the existing vertical clearance must not be reduced). Although not required, an evaluation should be performed to determine how best to achieve the standard, either in full or with incremental progress. Obtaining incremental progress toward the vertical clearance requirement with the road 4 R project could prevent other more costly construction with the next major bridge rehabilitation or replacement project.

Road 4R and Bridge 4R work on Collectors and Local Routes

Maintain existing vertical clearance and a minimum of $14^{\prime}-6{ }^{\prime \prime}$. ($14^{\prime}-9$ "'is desired on 4R projects if possible)

Road or Bridge 3R Work- Freeways

Definition: Projects whose scope of work include resurfacing, milling or profiling; lane and or shoulder widening (no increase in the number of through lanes); roadway base correction; minor alignment improvements; roadside safety improvements; intersection and railroad crossing upgrades; pavement joint repair; crush and shape and resurfacing; rubblize and resurface; passing relief lanes; intermittent grade lifts that leave more than 50% of the existing pavement in service; signing, pavement marking and traffic signals; passing relief lanes; bridge deck overlay and /or minor widening (no increase in number of through lanes).

When doing Road or Bridge 3R work over the Freeway System structures must be designed to meet the current AASHTO vertical clearance requirement of $16^{\prime}-0^{\prime \prime}\left(16^{\prime}-3^{\prime \prime}\right.$ is desired for future overlay of the road). A design exception is required if the proposed vertical clearance requirement is not met. The format for the design exception does not need to include the detailed evaluation but should include the basis for the request and a review of the accident history and high load hits for the structures in the immediate vicinity of the structure.

Road or Bridge 3R work- Arterials

Definition: Projects whose scope of work include resurfacing, milling or profiling; lane and or shoulder widening (no increase in the number of through lanes); roadway base correction; minor alignment improvements; roadside safety improvements; intersection and railroad crossing upgrades; pavement joint repair; crush and shape and resurfacing; rubblize and resurface; passing relief lanes; intermittent grade lifts that leave more than 50% of the existing pavement in service; signing, pavement marking and traffic signals; passing relief lanes; bridge deck overlay and /or minor widening (no increase in number of through lanes).

When doing Road 3R work on the Arterial System the bridges are considered existing structures and can be retained if they meet the $14^{\prime}-0^{\prime \prime}$ vertical clearance standard, therefore no design exception is required (Reference AASHTO standards, 2001 green book Chapter VII, Vertical Clearance, pg. 451). The existing vertical clearance must be retained. Although not required, an evaluation should be performed to determine how best to achieve the standard, either in full or with incremental progress. Obtaining incremental progress toward the vertical clearance requirement with the road 3 R project could prevent other more costly construction with the next major bridge rehabilitation or replacement project. A design exception is required to maintain the vertical clearance below $16^{\prime}-3^{\prime \prime}$. The likelihood of obtaining design exceptions for reducing vertical clearance is extremely remote.

When doing Bridge 3R work on the Arterial System the structures are considered existing and the existing vertical clearance may be retained. No design exception is required.

Road 3R and Bridge 3R work on Collectors and Local routes

Maintain existing vertical clearance and a minimum of $14^{\prime}-0^{\prime \prime}$.

Road and Bridge Preventative Maintenance

Definition: Projects whose scope of work includes but not limited to Road Work consisting of Thin Bituminous overlays, pavement grinding, Concrete Joint Repair, Slurry Seal-Shoulders only, Seal Coat-Shoulders only and Bridge Work consisting of painting (full, spot, zone), pin and hanger replacement, slope paving repair, joint replacement and repair, drainage system repair, scour countermeasures, concrete crack sealing, concrete patching and repair (high quality patching), approach pavement relief joint installation, and polymer overlays. See 14.01.01 of the Road Design Manual complete listing.

Maintain existing vertical clearance. No design exception required.

TABLE 1
VERTICAL CLEARANCE REQUIREMENT TABLE

	NHS \& Non NHS	National Highway System(NHS)				Non NHS	
Route Classification Under the Structure	All Construction	New Construction	Road 4R Construction	Bridge 4R Construction	3R Construction	All New \& 4R Const.	All 3R Const
	Desired	Min	Min	Min	Min	Min	Min
Freeways	$16^{\prime} \cdot 3^{\prime \prime}$	$16^{\prime}-0^{\prime \prime}$ *	16'-0" *	16'-0" *	16'0" *	$14^{\prime \prime}-6^{\prime \prime}$ *	$14^{\prime}-6^{\prime \prime}$ *
Arterials (Local \& Trunkline)	16-3"	$16^{\prime}-0^{-\prime *}$	Maintain Existing 14'-6" Min*	$16^{\prime}-0^{\prime \prime}$	14'-0" *	$14^{\prime}-6^{n *}$	$14^{\prime}-0^{\prime \prime}$ *
 Special Routes ${ }^{(1)}$	$14^{\prime \prime} 9^{\prime \prime}$	$14^{*}-6^{*}$	Maintain Existing 14-6" Min^{*}	Maintain Existing 14-6" Min ${ }^{*}$	$14^{\prime}-0^{\prime \prime}$ *	$14^{\prime}-6^{\prime \prime}$ *	14'-0" *

$3 R=$ Rehabilitation, Restoration, Resurfacing
4R = Reconstruction

* Minimum Vertical Clearance must be maintained over complete usable shoulder width.
${ }^{(1)}$ Special Routes are in Highly Urbanized Areas where an alternate route of $16^{\prime}-0^{\prime \prime}$ is available or has been designated. The listing of exempted structures is contained in Exhibit A. Design exceptions are required if the minimum vertical clearance is not met. See the design exception matrix included in this document.

Design Exception Requirements

Vertical Clearance

Design Exceptions are needed where proposed vertical clearance does not meet the minimum clearance requirements provided in Table 1

Type of Project	Design Exception Required	Coordination with MTMCTEA Required	MDOT approval required by Engineer of Design or Engineer of Bridge Design	FHWA Approval Required
New and 4R reconstruction work on Interstate greater than $\$ 1,000,000$	Yes	Yes	Yes	Yes
New and 4R reconstruction work on Interstate less than $\$ 1,000,000$	Yes	Yes	Yes	No
New and 4R reconstruction work on Non Interstate Freeways greater than $\$ 5,000,000$	Yes	No	Yes	Yes
New and 4R reconstruction work on Non Interstate Freeways less than $\$ 5,000,000$	Yes	No	Yes	No
New and 4 R reconstruction work on NHS Routes other than Freeways greater than $\$ 5,000,000$	Yes	No	Yes	Yes
New and 4R reconstruction work on NHS Routes other than Freeways less than $\$ 5,000,000$	Yes	No	Yes	No
New and 4R Reconstruction on Non-NHS Routes	Yes	No	Yes	No
3R Work on Interstate System	Yes	Yes	Yes	Negotiated per Project
3R Work on Non Interstate Freeways	Yes	No	Yes	Negotiated per Project
3R Road Work on Non-Freeway Arterial Routes	Yes	No	Yes	Negotiated per Project
3R Bridge Work on Non-Freeway Arterial Routes	Yes	No	Yes	Negotiated per Project
3R Work on Other Non-Freeway Routes	Yes	No	Yes	Negotiated per Project
Preventative Maintenance Work	No	No	No	No

MTMCTEA- Military Traffic Management Command Transportation Engineering Agency
Vertical Clearance Scoping Instructions
December 28, 2005

Vertical Clearance Table References

Item

1. Vertical clearance for grade separations and interchanges above the travelway and shoulders should be $1^{\prime}-0$ " greater that the legal height and allowance should be made for future resurfacing.

Vehicle Ht. in MI 13'6"
$\frac{+1^{\prime} 0^{\prime \prime}}{14^{\prime} 6^{\prime \prime}}$

2 Interstate Freeways all work types
3. Freeway New Construction, Road 4R and Bridge 4
4. Arterials New Construction all work types.
5. Collectors and other Local Roads all work types.
6. ${ }^{(1)}$ Special Routes - (Highly Urbanized Areas)
7. 14'-0" allowance for 3 R work.

Reference

AASHTO "A Policy on Geometric Design of Highways and Streets 2001" Page 767.

Michigan Vehicle Code 257.719; "Section 719,(1) A vehicle unloaded or with load shall not exceed a height of 13 feet 6 inches."

AASHTO "A policy on Design Standards-Interstate System January 2005" Page 5.

AASHTO "A Policy on Geometric Design of Highways and Streets 2001" Page 510-511.

AASHTO "A Policy on Geometric Design of Highways and Streets 2001" Pages 451 and 476.

AASHTO "A Policy on Geometric Design of Highways and Streets 2001" Pages $389,403,418,431$, and 440.

AASHTO "A policy on Design Standards-Interstate System January 2005" Page 5.

AASHTO "A Policy on Geometric Design of Highways and Streets 2001" Page 451,476, and 510-511.

AASHTO "A Policy on Geometric Design of Highways and Streets 2001" Foreword Page xliii. "This publication is not intended as a policy for resurfacing, restoration, or rehabilitation (R.R.R.) Projects." and "When designing 3R projects the designer should refer to TRB Special Report 214, Designing Safer Roads: Practices for Resurfacing, Restoration, and Rehabilitation and related publications for guidance" No reference has been found in the TRB report pertaining to vertical clearance. Additionally, AASHTO "A Policy on Geometric Design of Highways and Streets 2001" Pages 451 and 476 states "Existing structures that provide clearance of $14^{\prime}-0$ ", if allowed by local statute, may be retained". This infers that for 3 R work the standards used at the time of original construction may be used, thus the 1.0 ft above legal height would not necessarily apply. Logic indicates we are not substantially altering the structure of the road or bridge therefore it is not appropriate to address vertical clearance with these projects.
U.S. Department

January 27, 2006

Ms. Gloria J. Jeff, Director
Michigan Department of Transportation (B450)
Lansing, Michigan
Dear Ms. Jeff:

Mr. Van Port Fleet's January 4, 2006, request for additional special route designations for bridge vertical clearance in highly developed urbanized areas is approved. This proposal should allow more efficient scoping of projects, since the required vertical clearance will be known and should allow MDOT's limited resources to be focused on the most important routes. I am pleased that MDOT and FHWA were able to work through the many difficult issues and develop a proposal that is acceptable to both agencies.

Sincerely,
Original signed by:
James J. Steele
Division Administrator
cc: J. Polasek, MDOT Highway Development (B340)
R. Van Port Fleet, MDOT Engineer of Design (B220)
(Document No. 91575)

APPENDIX D

I-94 MAINLINE SUPERELEVATED SECTION WITH AUXILIARY LANE(S) (RT SHOWN)
PROPOSED TYPICAL SECTIONS

[^0]: Source: HNTB

[^1]: | 2040 AM(7-8) \& PM(4-5) Peak Hr Volumes | Drawing SHEET |
 | :---: | :---: | :---: |
 | 1-94 From Beaubien to Chene | -4 |

[^2]: ${ }^{1}$ Based on an agreement between the City of Detroit, the Federal Highway Administration, and the Michigan Department of Transportation, the 8 feet would be designated as a shoulder in the Build Alternative.

[^3]: ${ }^{1}$ These operations were documented in memos concerning the lane width testing evaluation.

[^4]: Network wide Queuing Penalty: 2

